Let $A \in \mathbb{R}^{m \times n}$ a matrix. Show that $\mathscr{N}(A^TA) = \mathscr{N}(A)$, where $\mathscr{N}(A)$ is the null space of the matrix $A$.
Showing that if $x \in \mathscr{N}(A)$ then $x \in \mathscr{N}(A^TA)$ is very straightforward. I'm struggling to show that $\mathscr{N}(A^TA) \subseteq \mathscr{N}(A)$. I could do some algebraic manipulation but it wasn't sufficient:
Let $A=\begin{pmatrix} a_{11} & \dots & a_{1n}\\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \\ \end{pmatrix}= \begin{pmatrix} b_1 \ ; \dots ; \ b_{n} \end{pmatrix}.$
$A^TA=\begin{pmatrix} b_{1}^T \\ \vdots \\ b_{n}^T \end{pmatrix} \begin{pmatrix} b_1 \ ; \dots ; \ b_{n} \end{pmatrix} = \begin{pmatrix} b_{1}^Tb_{1} & \dots & b_{1}^Tb_{n} \\ \vdots & \ddots & \vdots \\ b_{n}^Tb_{1} & \dots & b_{n}^Tb_{n}\end{pmatrix}$
So we have $A^TAx = \begin{pmatrix} x_{1}b_{1}^Tb_{1} + \dots + x_{n}b_{1}^Tb_{n} \\ \vdots \\ x_{1}b_{n}^Tb_{1} + \dots + x_{n}b_{n}^Tb_{n}\end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0\end{pmatrix}$
From here I have no idea how to show this makes $Ax=0.$