I'm interested in knowing whether
$$Tf(x) = x^{-\frac{1}{2}}\int_{x}^{2x}f(y)dy = \int_{\mathbb R} K(x,y)f(y)dy, \quad x > 0$$
where $K(x,y) = x^{-\frac{1}{2}} 1_{0 < y \leq x \leq 2y}(x,y)$, defines an operator which is bounded from $L^2((0,\infty))$ to $L^2((0,\infty))$.
Using Minkowski inequality, one can prove the boundedness from $L^1((0,\infty))$ to $L^2((0,\infty))$ :
\begin{align*} ||Tf||_{L^2} &= \left( \int_{\mathbb R} \left| \int_{\mathbb R} K(x,y)f(y)dy \right|^2 dx \right)^{\frac{1}{2}} \leq \int_{\mathbb R} \left( \int_{\mathbb R} |K(x,y)f(y)|^2dx \right)^{\frac{1}{2}} dy \\ &= \int_{0}^{+\infty} \left( \int_{\frac{1}{2}y}^{y} x^{-1}|f(y)|^2dx \right)^{\frac{1}{2}} dy \lesssim ||f||_{L^1} \end{align*}
but I was not able to prove or disprove the $L^2-L^2$ boundedness. This looks related to Hardy's inequality.