Well I find it as a coincidence but how to explain :
$$\frac{1}{1+\frac{a}{1+\frac{a^{2}}{1+\frac{a^{3}}{1+\frac{\cdot\cdot\cdot}{a^{2n}}}}}}-\frac{1}{1+\frac{b}{1+\frac{b^{2}}{1+\frac{b^{3}}{1+\frac{\cdot\cdot\cdot}{b^{2n}}}}}}\simeq 7.33*10^{-5},a=\sqrt{5},b=\sqrt{\pi/4}$$
The difference is very small so : Is there any good reason to explain it ?
My analysis :
From Rogers-Ramanujan continued fraction we have :
Let :
$$\left(a;q\right)_{n}=\prod_{j=0}^{n-1}\left(1-aq^{j}\right)$$ then we have :
$$\frac{\sum_{n=0}^{\infty}\frac{q^{n^{2}}}{\left(q;q\right)_{n}}t^{n}}{\sum_{n=0}^{\infty}\frac{q^{\left(n\left(n-1\right)\right)}}{\left(q;q\right)_{n}}t^{n}}=\frac{1}{1+\frac{t}{1+\frac{tq}{1+\frac{tq^{2}}{1+\frac{tq^{3}}{1+\cdot\cdot\cdot}}}}}$$
Here : $t=q=\sqrt{5}$
Now we can express it as a power series see https://www.sciencedirect.com/science/article/pii/S0723086922000792
Using a very simple algorithm .
Another explanation could be from :
$$R\left(q\right)=\frac{\left(\sqrt{5}-1\right)}{2}\exp\left(-\frac{1}{5}\int_{q}^{1}\frac{\left(1-t\right)^{5}\left(1-t^{2}\right)^{5}\left(1-t^{3}\right)^{5}\cdot\cdot\cdot}{\left(1-t^{5}\right)\left(1-t^{10}\right)\left(1-t^{15}\right)\cdot\cdot\cdot}\frac{dt}{t}\right)=\frac{q^{\frac{1}{5}}}{1+\frac{q}{1+\frac{q^{2}}{1+\cdot\cdot\cdot}}}$$
See for that the Lost's book of Ramanujan.
See also this kind of question A series related to $\pi\approx 2\sqrt{1+\sqrt{2}}$
Remark :
It might be interesting to think at the Gamma's function we have :
$$\left(\frac{1}{\sqrt{5}}\right)!\simeq \sqrt{\frac{\pi}{4}}$$
And again using the work due to Ramanujan $x>0$:
$$\frac{x!}{\sqrt{\pi}\left(\frac{x}{e}\right)^{x}\left(8x^{3}+4x^{2}+x+\frac{1}{30}\right)^{\frac{1}{6}}}\simeq \left(\prod_{n=3}^{\infty}\frac{\left(1-x^{\left(5n-4\right)}\right)\left(1-x^{\left(5n-1\right)}\right)}{\left(1-x^{\left(5n-2\right)}\right)\left(1-x^{\left(5n-3\right)}\right)}\right)^{\frac{1}{144}}$$
We have also :
$$(5^{1/2})!/5^{1/2}-2/\sqrt{\pi}\simeq 0$$