Suppose a matrix $A\in M_n(K)$ has the characteristic polynomial
\begin{align*}
p(\lambda)\,=\, \big|A-\lambda I_n\big|\,&=\,(-1)^n\big(\lambda -\lambda_1\big)^{m_1}\cdots\big(\lambda -\lambda_p\big)^{m_p},
\end{align*}
then the Jordan normal form of $A$ is given by
$$ J\,=\,\widetilde J_{m_1}(\lambda_1)\oplus\cdots\oplus\widetilde J_{m_p}(\lambda_p) $$
where $\widetilde J_{m_i}(\lambda_i)$ is the Jordan matrix associated with the eigenvalue $\lambda_i$. If
\begin{align*}
m(\lambda)\,=\,(\lambda-\lambda_1)^{k_1}\cdots(\lambda-\lambda_p)^{k_p}.
\end{align*}
is the minimal polynomial of $A$, and $\dim E(\lambda_i)=r_i$ for each $i$, then the Jordan matrices are given by
\begin{align}
\widetilde J_{m_i}(\lambda_i) \,=\, J_{d_{i1}}(\lambda_i)\oplus\cdots\oplus J_{d_{ir_i}}(\lambda_i)
\end{align}
where $J_{d_{ij}}(\lambda_i) $ is a Jordan block of order $d_{ij}$, and the largest block is of size $k_i$. Usually, when $n\leq4$, you can immediately deduce $r_i$ (and hence, $d_{ij}$) after getting the minimal polynomial $m(\lambda)$ without computing $\dim E(\lambda_i)$.