I would need help with this example.
Let $(S, ||\cdot||)$ denote a normed vector space over $K =\mathbb R$ or $K =\mathbb C$. Let $X$ and $Y$ be $S$-valued random vectors with $E~[~||X||~] < \infty$ and $E~[~||Y||~] < \infty$.
Prove that, for every $c \in K $\ $ \{0\}$: $d_W(\mathcal{L}(cX), \mathcal{L}(cY )) = |c| d_W(\mathcal{L}(X), \mathcal{L}(Y))$.
Hint: For $f : S → R$ with $Lip(f) ≤ 1$ consider $f_c(x) := \frac{1}{|c|} f(cx)$ for $x \in S$.
$d_W(\mathcal{L}(X),\mathcal{L}(Y)) = \sup_{f \in F_W} \int_S f d\mathcal{L}(X) - \int_S f d\mathcal{L}(Y)$ and $F_W$ denote the set of all functions $f : S → R$, which are Lipschitz continuous with constant at most $1$.
Proof: First I show that $f_c \in F_W$:
$Lip(f_c) = \frac{1}{|c|} sup_{x,y \in S, x \neq y}\frac{f(cx)-f(cy)}{d(x,y)} \leq \frac{Lip(f)}{|c|} \leq \frac{1}{|c|}$ -> $f_c \in F_W $.
$d_W(\mathcal{L}(cX), \mathcal{L}(cY)) = \sup_{f \in F_W} \int_S f(cx) d\mathcal{L}(Xc)(x) - \int_S f(xc) d\mathcal{L}(Yc)(x) = \sup_{f \in F_W} \int_S f(cx) d\mathcal{L}(X)(\frac{x}{c}) - \int_S f(xc) d\mathcal{L}(Y)(\frac{x}{c}) = ?$
Have I got everything right so far? If so, how should I proceed now?
Thanks for the help!
I am not sure, would it be necessary to show that $\sup_{f_c \in F^c_W} \int_S f_c(z) d\mathcal{L}(X)(z) - \int_S f_c(z) d\mathcal{L}(Y)(z) = \sup_{f \in F_W} \int_S f(x) d\mathcal{L}(X)(x) - \int_S f(x) d\mathcal{L}(Y)(x)$ holds.
– Spira Mar 14 '23 at 23:21