We have
$$ f(n) = \sum_{k=0}^{\infty} \mathbf{1}\{\lfloor n / 2^k \rfloor \text{ is odd}\}, $$
where $\mathbf{1}\{\ldots\}$ stands for the indicator function. Plugging this into OP's sum and interchanging the order of summation (which is allowed by Fubini–Tonelli Theorem),
\begin{align*}
\sum_{n=1}^{\infty} \frac{f(n)}{n(n+1)}
&= \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \sum_{k=0}^{\infty} \mathbf{1}\{\lfloor n / 2^k \rfloor \text{ is odd}\} \\
&= \sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \mathbf{1}\{\lfloor n / 2^k \rfloor \text{ is odd}\}.
\end{align*}
Now we focus on the inner sum that runs over $n = 1, 2, \ldots$. Since the indicator function factor survives with value $1$ precisely when $\lfloor n / 2^k \rfloor$ is an odd number, we may represent those $n$ by the form
$$ n = (2q-1)2^k + r, $$
where $q = 1, 2, 3, \ldots$ and $r = 0, 1, \ldots, 2^k - 1$. So,
\begin{align*}
&\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \mathbf{1}\{\lfloor n / 2^k \rfloor \text{ is odd}\} \\
&= \sum_{n=1}^{\infty} \left( \frac{1}{n} - \frac{1}{n+1} \right) \mathbf{1}\{\lfloor n / 2^k \rfloor \text{ is odd}\} \\
&= \sum_{q=1}^{\infty} \sum_{r=0}^{2^k - 1} \left( \frac{1}{(2q-1)2^k + r} - \frac{1}{(2q-1)2^k + r + 1} \right) \\
&= \sum_{q=1}^{\infty} \left( \frac{1}{(2q-1)2^k} - \frac{1}{(2q-1)2^k + 2^k} \right) \\
&= \frac{1}{2^k} \sum_{q=1}^{\infty} \left( \frac{1}{2q-1} - \frac{1}{2q} \right).
\end{align*}
In the third step, we utilized the fact that the inner sum is telescoping. However, the last sum is the famous alternating harmonic series, which converges to $\log 2$. Therefore,
\begin{align*}
\sum_{n=1}^{\infty} \frac{f(n)}{n(n+1)}
= \sum_{k=0}^{\infty} \frac{\log 2}{2^k}
= 2 \log 2.
\end{align*}