Let $\mathbf{A} \in \mathbb{C}^{n \times n}$ be a non-zero matrix with Schur decomposition $\mathbf{A}=\mathbf{U}(\boldsymbol{\Lambda}+\mathbf{N}) \mathbf{U}^*$ where $\mathbf{U}$ is unitary, $\mathbf{N}$ is strictly upper triangular, and $\boldsymbol{\Lambda}=\operatorname{diag}\left(\begin{array}{lll}\lambda_1 & \cdots & \lambda_n\end{array}\right)$. Prove that if $\mathbf{A}$ is nonsingular with $$ 2\|\mathbf{N}\|_2 \leq \min _{1 \leq j \leq n}\left|\lambda_j\right|, $$ then $\kappa_2(\mathbf{A}) \leq 3 \kappa_2(\mathbf{\Lambda})$.
My understandng is that we can write down the Schur decomposition of $\mathbf{A}^{-1} = \mathbf{U} (\mathbf{\Lambda}^{-1} + \mathbf{M}) \mathbf{U}^*$. Then, $$ \begin{aligned} \kappa_2(\mathbf{A}) & = \|\mathbf{\Lambda} + \mathbf{N}\|_2 \|\mathbf{\Lambda}^{-1} + \mathbf{M}\|_2 \\ & \leqslant \left(\max |\lambda_j| + \frac{1}{2} \min |\lambda_j|\right) \left(\frac{1}{\min |\lambda_j|} + \|\mathbf{M}\|_2\right). \end{aligned} $$ However, I am not sure how to move forward. Should I seek for a different direction. Any suggestions?