When I was first taught limits, we were forbidden from using L'Hopital's rule to calculate it. It was regarded as a "shortcut" and not a "real method" to find a limit. Obviously, when you have to take a limit it is often a very easy and intuitive method to find the limit (provided you check the conditions correctly).
However, this led me to think whether this is because it really is just a shortcut that is unnecessary or whether there are places where it is absolutely essential.
Of course, an example of a limit which does require L'Hopital's rule to be solved would answer my question, but especially if it's not true and you CAN always find a limit without L'Hopitals's rule, I want some kind of proof or at least understanding of this.