Proposition For regular spaces $X$ the inequality $w(X)\leq 2^{d(X)}$ holds.
Sketch of proof: Fix a dense subset $A\subseteq X$. The family $\mathcal{U} = \{\text{Int }\overline{B} : B\subseteq A\}$ is a basis for $X$. $\square$
Proposition $d(X)\leq w(X)$
Proof: Fix a basis $\mathcal{U}$ of $X$ and take $x_U\in U$ for each $U\in\mathcal{U}$. Then $D = \{x_U : U\in\mathcal{U}\}$ is dense in $X$, and $|D|\leq |\mathcal{U}|$. $\square$
Theorem $w(\beta X)\leq 2^{w(X)}$ for Tychonoff space $X$
Proof: Since $X$ is dense in $\beta X$, $d(\beta X)\leq d(X)$ (any dense subset of $X$ is dense in $\beta X$). So $$w(\beta X)\leq 2^{d(\beta X)} \leq 2^{d(X)}\leq 2^{w(X)}. \square$$
The inequality is optimal: $w(\beta \mathbb{N}) = 2^{w(\mathbb{N})} = \mathfrak{c}$.