How do I evaluate $\int \frac{2x}{(1-x^2)\sqrt{x^4-1}}dx$ ?
Note that this is a Q&A post and I've presented my solution below.
Let $$x=\sqrt{\sec({2\tan^{-1}}t)}$$
$$\Rightarrow dx=\frac{2\tan^{2}(2\tan^{-1}t)}{2(1+t^2)\sqrt{\sec(2\tan^{-1}t)}}$$
$$\Rightarrow xdx=\frac{\tan^2(2\tan^{-1}t)}{1+t^2}$$
Substituting in the original integral- $$\int \frac{2\tan^2(2\tan^{-1}t)}{(1+t^2)(1-\sec(2\tan^{-1}t))(\sqrt{\sec^2(2\tan^{-1}t)-1})}dt$$ $$= \int \frac{2\tan(2\tan^{-1}t)}{(1+t^2)(1-\sec(2\tan^{-1}t))}dt$$ $$= \int \frac{4t(1-t^2)}{(-2t^2)(1-t^4)}dt$$ $$= -2\int \frac{dt}{t(1+t^2)}$$ $$= -2\left(\log t-\frac{1}{2}\log(t^2+1)\right)+C$$