0

Suppose $J \in \mathbb{R}$.

Is $J^{-\frac{2}{3}} \in \mathbb{R}$ for all $J$ ?

I think yes, because: $J^{-\frac{2}{3}} = \frac{1}{J^{\frac{2}{3}}} = \frac{1}{\sqrt[3]{J^2}} \in \mathbb{R}$. Only for $J=0$, the expression is undefined.

Is that true?

1 Answers1

2

Long story short, $\frac{1}{\sqrt[3]{J^2}}$ is unambiguously defined for all $J\in\mathbb R\setminus\{0\}$, while $J^{-\frac 23}$ is an ambiguous expression for negative $J$.

Regarding the problem of raising a negative number to a non-integer exponent, consult Non-integer powers of negative numbers or How do you compute negative numbers to fractional powers? or What is $(-1)^{\frac{2}{3}}$? etc.

Andreas Tsevas
  • 2,639
  • 6
  • 15