Consider the problem of representing the reciprocal of an integer as an Egyptian fraction where all the denominators are palindromes. i.e. write $$ \frac{1}{n} = \sum_{i} \frac{1}{a_i} $$ where $a_i$ is a palindrome (repeating $a_i$ is allowed). In base 10 it is possible to represent all reciprocal integers as a sum of reciprocal palindromes. For example $$ \frac{1}{87} = \frac{1}{88} + \frac{1}{8008} + \frac{1}{232232} + \frac{1}{696696} $$ This is not possible in bases that are primes or prime powers. I know how to prove this, so that's not the question. The question or challenge rather is whether anyone can represent the numbers from 10 to 100 with fewer reciprocal palindromes than I have managed. I will write $1/37=3/111$ as a short-hand for $1/37 = 1/111 + 1/111 + 1/111$, but I count this as a representation with 3 palindromes. Without further ado this is my list: \begin{eqnarray*} \frac{1}{10} & = & \frac{1}{22} + \frac{3}{55}\\\\ \frac{1}{11} & = & \frac{1}{11}\\\\ \frac{1}{12} & = & \frac{2}{33} + \frac{1}{44}\\\\ \frac{1}{13} & = & \frac{1}{22} + \frac{1}{33} + \frac{1}{858}\\\\ \frac{1}{14} & = & \frac{1}{22} + \frac{2}{77}\\\\ \frac{1}{15} & = & \frac{1}{33} + \frac{2}{55}\\\\ \frac{1}{16} & = & \frac{1}{22} + \frac{2}{121} + \frac{1}{2112} + \frac{1}{23232}\\\\ \frac{1}{17} & = & \frac{1}{55} + \frac{3}{77} + \frac{1}{595}\\\\ \frac{1}{18} & = & \frac{1}{22} + \frac{1}{99}\\\\ \frac{1}{19} & = & \frac{1}{33} + \frac{1}{99} + \frac{2}{171} + \frac{1}{1881}\\\\ \frac{1}{20} & = & \frac{2}{55} + \frac{1}{77} + \frac{1}{4004} + \frac{2}{5005}\\\\ \frac{1}{21} & = & \frac{1}{22} + \frac{1}{858} + \frac{1}{1001}\\\\ \frac{1}{22} & = & \frac{1}{22}\\\\ \frac{1}{23} & = & \frac{1}{33} + \frac{1}{99} + \frac{1}{414} + \frac{3}{4554}\\\\ \frac{1}{24} & = & \frac{1}{33} + \frac{1}{88}\\\\ \frac{1}{25} & = & \frac{1}{33} + \frac{1}{252} + \frac{1}{404} + \frac{1}{505} + \frac{1}{909} + \frac{1}{5775} (\bf {joriki})\\\\ \frac{1}{26} & = & \frac{1}{44} + \frac{1}{66} + \frac{1}{3003} + \frac{1}{4004}\\\\ \frac{1}{27} & = & \frac{1}{44} + \frac{1}{77} + \frac{1}{777} + \frac{1}{27972}\\\\ \frac{1}{28} & = & \frac{1}{44} + \frac{1}{77}\\\\ \frac{1}{29} & = & \frac{1}{44} + \frac{1}{88} + \frac{1}{2552}\\\\ \frac{1}{30} & = & \frac{1}{55} + \frac{1}{66}\\\\ \frac{1}{31} & = & \frac{1}{66} + \frac{1}{77} + \frac{1}{252} + \frac{1}{6776} + \frac{1}{270072}\\\\ \frac{1}{32} & = & \frac{1}{33} + \frac{2}{2112}\\\\ \frac{1}{33} & = & \frac{1}{33}\\\\ \frac{1}{34} & = & \frac{1}{44} + \frac{1}{242} + \frac{1}{484} + \frac{2}{4114}\\\\ \frac{1}{35} & = & \frac{1}{44} + \frac{1}{252} + \frac{1}{585} + \frac{1}{6006}\\\\ \frac{1}{36} & = & \frac{1}{44} + \frac{1}{202} + \frac{1}{9999}\\\\ \frac{1}{37} & = & \frac{3}{111}\\\\ \frac{1}{38} & = & \frac{1}{66} + \frac{1}{99} + \frac{2}{1881}\\\\ \frac{1}{39} & = & \frac{1}{44} + \frac{1}{616} + \frac{1}{858} + \frac{1}{8008}\\\\ \frac{1}{40} & = & \frac{1}{44} + \frac{1}{505} + \frac{1}{5555} + \frac{1}{8888}\\\\ \frac{1}{41} & = & \frac{1}{77} + \frac{1}{99} + \frac{1}{777} + \frac{1}{81918} + \frac{1}{333333} + \frac{1}{81999918}\\\\ \frac{1}{42} & = & \frac{1}{44} + \frac{1}{2002} + \frac{1}{3003} + \frac{1}{4004}\\\\ \frac{1}{43} & = & \frac{1}{44} + \frac{1}{2442} + \frac{1}{13431} + \frac{1}{26862} + \frac{1}{210012} + \frac{1}{420024} + \frac{1}{4620264}\\\\ \frac{1}{44} & = & \frac{1}{44}\\\\ \frac{1}{45} & = & \frac{1}{55} + \frac{1}{585} + \frac{2}{858}\\\\ \frac{1}{46} & = & \frac{1}{77} + \frac{1}{161} + \frac{1}{828} + \frac{1}{858} + \frac{1}{6006} + \frac{1}{828828}\\\\ \frac{1}{47} & = & \frac{3}{141}\\\\ \frac{1}{48} & = & \frac{2}{99} + \frac{1}{2112} + \frac{1}{6336}\\\\ \frac{1}{49} & = & \frac{1}{66} + \frac{1}{252} + \frac{1}{777} + \frac{1}{999999} + \frac{1}{2545452}\\\\ \frac{1}{50} & = & \frac{1}{66} + \frac{1}{252} + \frac{1}{2772} + \frac{3}{5775} (\bf joriki)\\\\ \frac{1}{51} & = & \frac{1}{99} + \frac{1}{171} + \frac{1}{323} + \frac{2}{3553}\\\\ \frac{1}{52} & = & \frac{1}{66} + \frac{1}{252} + \frac{1}{9009}\\\\ \frac{1}{53} & = & \frac{4}{212}\\\\ \frac{1}{54} & = & \frac{2}{111} + \frac{1}{2002} + \frac{1}{999999}\\\\ \frac{1}{55} & = & \frac{1}{55}\\\\ \frac{1}{56} & = & \frac{1}{88} + \frac{1}{252} + \frac{1}{444} + \frac{1}{3663}\\\\ \frac{1}{57} & = & \frac{3}{171}\\\\ \frac{1}{58} & = & \frac{4}{232}\\\\ \frac{1}{59} & = & \frac{2}{161} + \frac{1}{616} + \frac{2}{767} + \frac{1}{4004} + \frac{1}{21712} + \frac{1}{21733712}\\\\ \frac{1}{60} & = & \frac{1}{111} + \frac{1}{444} + \frac{3}{555}\\\\ \frac{1}{61} & = & \frac{1}{66} + \frac{1}{858} + \frac{1}{25452} + \frac{1}{28182} + \frac{1}{909909} + \frac{2}{4214124} + \frac{1}{17288271} + \frac{1}{46355364}\\\\ \frac{1}{62} & = & \frac{1}{66} + \frac{1}{2002} + \frac{1}{3003} + \frac{1}{7007} + \frac{1}{434434} (\bf {joriki})\\\\ \frac{1}{63} & = & \frac{1}{66} + \frac{2}{2772}\\\\ \frac{1}{64} & = & \frac{1}{66} + \frac{1}{2112}\\\\ \frac{1}{65} & = & \frac{1}{66} + \frac{1}{5005} + \frac{1}{55055} + \frac{1}{66066}\\\\ \frac{1}{66} & = & \frac{1}{66}\\\\ \frac{1}{67} & = & \frac{1}{77} + \frac{1}{1001} + \frac{1}{2002} + \frac{3}{7007} + \frac{1}{85358}\\\\ \frac{1}{68} & = & \frac{4}{272}\\\\ \frac{1}{69} & = & \frac{1}{77} + \frac{1}{1771} + \frac{2}{2772} + \frac{1}{4554}\\\\ \frac{1}{70} & = & \frac{1}{99} + \frac{1}{252} + \frac{1}{5445} + \frac{1}{44044} + \frac{1}{99099} ({\bf joriki})\\\\ \frac{1}{71} & = & \frac{1}{77} + \frac{1}{1221} + \frac{1}{7007} + \frac{1}{10101} + \frac{2}{75757} + \frac{1}{111111} + \frac{1}{777777} + \frac{5}{53888835}\\\\ \frac{1}{72} & = & \frac{1}{88} + \frac{1}{444} + \frac{1}{3663}\\\\ \frac{1}{73} & = & \frac{4}{292}\\\\ \frac{1}{74} & = & \frac{1}{111} + \frac{1}{222}\\\\ \frac{1}{75} & = & \frac{1}{77} + \frac{2}{5775}\\\\ \frac{1}{76} & = & \frac{1}{99} + \frac{1}{444} + \frac{1}{1881} + \frac{1}{3663}\\\\ \frac{1}{77} & = & \frac{1}{77}\\\\ \frac{1}{78} & = & \frac{1}{88} + \frac{1}{696} + \frac{1}{63336} + \frac{1}{232232}\\\\ \frac{1}{79} & = & \frac{1}{88} + \frac{1}{858} + \frac{1}{8008} + \frac{2}{474474}\\\\ \frac{1}{80} & = & \frac{2}{181} + \frac{1}{696} + \frac{1}{86768} + \frac{1}{507705} ({\bf joriki})\\\\ \frac{1}{81} & = & \frac{1}{88} + \frac{1}{1551} + \frac{1}{3663} + \frac{1}{15651} + \frac{1}{6006006} + \frac{1}{8008008}\\\\ & & + \frac{1}{11011011} + \frac{1}{99099099} + \frac{1}{141141141} + \frac{1}{333333333} + \frac{1}{999999999}\\\\ \frac{1}{82} & = & \frac{1}{111} + \frac{2}{656} + \frac{1}{11111} + \frac{1}{21312} + \frac{1}{2466642} + \frac{1}{236797632}\\\\ \frac{1}{83} & = & \frac{9}{747}\\\\ \frac{1}{84} & = & \frac{3}{252}\\\\ \frac{1}{85} & = & \frac{7}{595}\\\\ \frac{1}{86} & = & \frac{1}{88} + \frac{1}{4664} + \frac{1}{23532} + \frac{2}{401104} + \frac{1}{420024}\\\\ \frac{1}{87} & = & \frac{1}{88} + \frac{1}{8008} + \frac{1}{232232} + \frac{1}{696696}\\\\ \frac{1}{88} & = & \frac{1}{88}\\\\ \frac{1}{89} & = & \frac{11}{979}\\\\ \frac{1}{90} & = & \frac{1}{222} + \frac{1}{333} + \frac{2}{555}\\\\ \frac{1}{91} & = & \frac{1}{99} + \frac{2}{2772} + \frac{1}{6006}\\\\ \frac{1}{92} & = & \frac{4}{414} + \frac{1}{828}\\\\ \frac{1}{93} & = & \frac{1}{101} + \frac{1}{1331} + \frac{1}{9999} + \frac{1}{2970792} + \frac{1}{27277272} ({\bf joriki})\\\\ \frac{1}{94} & = & \frac{1}{141} + \frac{1}{282}\\\\ \frac{1}{95} & = & \frac{1}{222} + \frac{2}{494} + \frac{1}{525} + \frac{1}{20202} + \frac{1}{52725} ({\bf joriki})\\\\ \frac{1}{96} & = & \frac{1}{99} + \frac{2}{6336}\\\\ \frac{1}{97} & = & \frac{1}{111} + \frac{1}{777} + \frac{1}{111111} + \frac{1}{241142} + \frac{3}{26766762} + \frac{2}{221434122}\\\\ \frac{1}{98} & = & \frac{1}{99} + \frac{1}{9999} + \frac{1}{606606} + \frac{1}{707707}\\\\ \frac{1}{99} & = & \frac{1}{99}\\\\ \frac{1}{100} & = & \frac{1}{222} + \frac{1}{444} + \frac{1}{575} + \frac{1}{777} + \frac{2}{10101} + \frac{1}{52325}\\\\ \end{eqnarray*}
We can find all representation as a sum of two unit fractions $$ \frac{1}{n} = \frac{1}{a} + \frac{1}{b} $$ by use of the quadratic equation $(a-n)(b-n)=n^2$ obtained by cross-multiplying by $abn$ and adding $n^2$ to both sides. That means we can determine if $1/n$ can be represented as a sum of two reciprocal palindrome, so all entries with only 1, 2 or 3 palindromes can be assumed to be optimal. So, the interest is in finding shortest representation for the remaining integers.
To explain how I found a lot of the representation consider $n=19$. I find a palindrome that is a multiple of 19, in this case $1881 = 99 \cdot 19$ and find all palindromic divisors of 1881 larger than 19: 33, 99, 171, 1881. We then find find non-negative integers $a, b, c, d$ such that $$ \frac{1}{19} = \frac{a}{33} + \frac{b}{99}+\frac{1}{171}+\frac{d}{1881} $$ with the smallest sum $a+b+c+d$. Cross multiplying by 1881 gives the problem of minimizing $a+b+c+d$ subject to $$ 99 = 57a + 19b + 11c + d. $$ I found $a=b=d=1$ and $c=2$. In general this is can be solved as an integer linear program which is what I used for some of the larger problems. This method does however not work for multiples of 10 and is certainly not the only way to approach the problem. I would be interested if someone can do better for some of the entries or even come up with cooler representations with the same number of palindromes.