Equation of axis of parabola which
passes through the point $(0,1)\ , \ (0,2)$
And $(2,0)\ ,\ (2,2)$ is
Let general equation of conic is
$ax^2+2hxy+by^2+2gx+2fy+c=0\cdots (1)$
And it represent parabola if $h^2=ab$
Parabola passes through $(0,1)$
Then put into $(1)$
$b+2f+c=0\cdots(2)$
Also parabola passes through $(0,2)$
Then $4b+4f+c=0\cdots (3)$
Also parabola passes through $(2,0)$
Then $4a+4g+c=0\cdots (4)$
Also parabola passes through $(2,2)$
Then $4a+8h+4b+4g+4f+c\cdots (5)$
$(4a+4g+c)+(4b+4f+c)+8h-c=0$
From $(2)$ and $(3)$, we get $\displaystyle h=\frac {c}{8}$
From $(2)$ and $(3)$
$\displaystyle b+2f=4b+4f\Longrightarrow 2f=-3b $
Put into $(2)$ and $(3)$
$\displaystyle b=\frac{c}{2}$ and $\displaystyle f=-\frac{3c}{4}$
And $\displaystyle h^2=ab\Longrightarrow \frac{c^2}{64}=\frac{ac}{2}\Longrightarrow a=\frac{c}{32}$
Put all into $(4)$
$\displaystyle \frac{4c}{32}+4g+c=0\Longrightarrow g=-\frac{9c}{32}$
Put all values into $(1)$
$\displaystyle \frac{c}{32}x^2+\frac{c}{4}xy+\frac{c}{2}y^2-\frac{9}{16}x-\frac{3c}{2}y+c=0$
$x^2+8xy+16y^2-18x-48y+32=0$
Buti did not know how I find axis of parabola
Please have a look
