Consider rational solutions to:
$$x^2+5xy+3y^2=1.\tag1$$
We have $(-1,0)$ is a rational solution.
If $p,q$ are relatively prime integers, there are usually two values $t$ such that $(-1+pt,qt)=(-1,0)+t(p,q)$ is a solution, one with $t=0.$
$$\begin{align}0&=(-1+pt)^2+5(-1+pt)qt+3(qt)^2-1\\&=-2pt+p^2t^2-5qt+5pqt^2+3q^2t^2\\&=t(\left(p^2+5pq+3q^2)t-(2p+5q)\right)
\end{align}$$
So $t=0$ or $t=\frac{2p+5q}{p^2+5pq+3q^2}.$
The. $$(x,y)=\left(\frac{p^2-3q^2}{p^2+5pq+3q^2},\frac{2pq+5q^2}{p^2+5pq+3q^2}\right)$$
And you get $$(a,b,c)=(p^2-3q^2,2pq+5q^2,p^2+5pq+3q^2).\tag2$$
If $(p,q)=(2,1)$ you get your solution $(1,9,17).$
This won't give primitive solutions, in general. When $(p,q)=(5,-2)$ then $(a,b,c)=(-13,0,-13),$ for example.
If $\gcd(p,q)=1,$ we can show $\gcd(a,b)=1$ or $13.$ It can only be $13$ if $p\equiv 4q\pmod{13}.$
This finds all solutions because there is no non-zero solutions with $c=0.$ This is because, for integers $a,b:$
$$(2a+5b)^2-13b^2=4(a^2+5ab+3b^2)\neq 0$$ unless $(a,b)=(0,0).$
You can get all primitive roots from $p,q$ with $\gcd(p,q)=1$ by using $(2)$ if $p\not\equiv 4q\pmod{13}$ and using $$(a,b,c)=\left(\frac{p^2-3q^2}{13},\frac{2pq+5q^2}{13},\frac{p^2+5pq+3q^2}{13}\right)\tag{3}$$ when $p\equiv 4q\pmod{13}.$ $(3)$ is just $(2)$ with the common factor of $13$ factored out.