Let $K(G)$ be the commutator subgroup. It is said that in the quotient space $G/K(G)$ $$\begin{align} [a][b]&=[a][b][b^{-1}a^{-1}ba]\\ &=[a][b][b^{-1}][a][b][a]\\ &=[b][a]. \end{align}$$
Where does the first equality come from?
I only see that since $ab=[a,b]ba$, I get $$\begin{align} [a][b]&=[ab]\\ &=[[a,b]ba]\\ &=[aba^{-1}b^{-1}ba]\\ &=[a][b][a^{-1}b^{-1}ba] \end{align}$$