Let $$\begin{align} A:&=\begin{pmatrix}{11\over 6}&2\\-1&-1\end{pmatrix}\\ B:&=\lim_{n\to\infty}\sum_{k=1}^{n}kA^{k-1}\\ A^{0}&=I \end{align}$$
I want to evaluate $B$.
My tries:
$$\begin{align} A&=\begin{pmatrix}{11\over 6}&2\\-1&-1\end{pmatrix}\\ &={6\over 6}\begin{pmatrix}{11\over 6}&2\\-1&-1\end{pmatrix}\\ &={1\over 6}\begin{pmatrix}11&12\\-6&-6\end{pmatrix}\\ \therefore A^{k-1}&=\left({1\over 6}\right)^{k-1}\begin{pmatrix}11&12\\-6&-6\end{pmatrix}^{k-1}\\ A^{0}&=I\\ A^{1}&={1\over 6}\begin{pmatrix}11&12\\-6&-6\end{pmatrix}\\ A^2&={1\over 36}\begin{pmatrix}49&60\\-30&-36\end{pmatrix}\\ A^3&={1\over 216}\begin{pmatrix}179&228\\-114&-144\end{pmatrix} \end{align}$$
I coudn't find a regurarity for a power of $A$.
I also tried to use $P^{-1}AP$ but it seems that this kind of approach may not work.
$$ \lambda=\frac{1}{2},~\frac{1}{3}\leftarrow\text{Eigenvalues for}~A $$
I got $\begin{pmatrix}2&0\\0&1\end{pmatrix}$ after doing elementary roe operations for $\lambda={1\over 2}$ and definitely this set of matrices can't compose a non-zero vector.
I need your help.