Let the CDF of $YZ$ be $F$, $\Phi$ and $\varphi$ be the CDF and PDF of the standard normal random variable. For any $u \in \mathbb{R}$, by the independence of $Y$ and $Z$, we have
\begin{align}
& F(u) = P[YZ \leq u] = \int_{-\infty}^\infty P[Yz \leq u]\varphi(z)dz \\
=& \int_{-\infty}^0 P[Y \geq uz^{-1}]\varphi(z)dz
+ \int_0^\infty P[Y \leq uz^{-1}]\varphi(z)dz \\
=& \int_{-\infty}^0 (1 - \Phi(uz^{-1}))\varphi(z)dz
+ \int_0^\infty \Phi(uz^{-1})\varphi(z)dz.
\end{align}
It then follows by the symmetry of $\varphi$ that
\begin{align}
& F(-u) = \int_{-\infty}^0 (1 - \Phi(-uz^{-1}))\varphi(z)dz
+ \int_0^\infty \Phi(-uz^{-1})\varphi(z)dz \\
=& \int_0^\infty (1 - \Phi(ut^{-1}))\varphi(-t)dt
+ \int_{-\infty}^0 \Phi(ut^{-1})\varphi(-t)dt \\
=& \int_0^\infty (1 - \Phi(ut^{-1}))\varphi(t)dt
+ \int_{-\infty}^0 \Phi(ut^{-1})\varphi(t)dt \\
=& \int_0^\infty\varphi(t)dt - \int_0^\infty\Phi(ut^{-1})\varphi(t)dt \\
& + \int_{-\infty}^0 (\Phi(ut^{-1}) - 1)\varphi(t)dt + \int_0^\infty\varphi(t)dt \\
=& \int_{-\infty}^\infty\varphi(t)dt - \int_{-\infty}^0 (1 - \Phi(ut^{-1}))\varphi(t)dt - \int_0^\infty\Phi(ut^{-1})\varphi(t)dt \\
=& 1 - F(u).
\end{align}
Now by noting $X$ is independent of $YZ$, similar argument as above gives:
\begin{align}
& I := P[X > YZ] \\
=& \int_{-\infty}^\infty P[YZ < x]dx \\
=& \int_{-\infty}^\infty F(x)\varphi(x)dx \\
=& \int_{-\infty}^\infty (1 - F(-x))\varphi(x)dx \tag{$F(x) = 1 - F(-x)$} \\
=& 1 - \int_{-\infty}^\infty F(-x)\varphi(x)dx \\
=& 1 - \int_{-\infty}^\infty F(u)\varphi(-u)du \\
=& 1 - \int_{-\infty}^\infty F(u)\varphi(u)du \tag{$\varphi(-u) = \varphi(u)$}\\
=& 1 - I.
\end{align}
Hence $2I = 1$, i.e., $I = 1/2$.
The above argument clearly also generalizes in deriving $P[X_1 > X_2] = 1/2$, where $X_1, X_2$ are independent and both of them are symmetric around $0$.
A more direct proof (which is essentially same as the first answer but does not initialize any conditional argument):
\begin{align}
& P[X > YZ] \\
=& \int_{-\infty}^\infty P[X > Yz]\varphi(z)dz \\
=& \int_{-\infty}^\infty P[X - zY > 0]\varphi(z)dz \\
=& \frac{1}{2}\int_{-\infty}^\infty \varphi(z)dz = \frac{1}{2}.
\end{align}
The first equality follows from Theorem 20.3 in Probability and Measure by Patrick Billingsley. In the third equality, we used $X - zY \sim N(0, 1 + z^2)$ given $X, Y \text{ i.i.d. } \sim N(0, 1)$ for any fixed $z \in \mathbb{R}$, whence $P[X - zY > 0] = 1/2$ for every $z$.