We seek to show that
$$\sum_{k=1}^{m}\sum_{q_1+q_2+\dots+q_k=m}\left(\frac{1}{q_1!}
\frac{1}{q_2!}\cdots\frac{1}{q_k!}\right)
\times\frac{(-1)^{k+1}}{k}=\begin{cases}1,
& m=1\\ 0,& m>1\end{cases}$$
where $q_1,\dots,q_k$ are positive integers.
Write this as
$$\sum_{k=1}^{m} \frac{(-1)^{k+1}}{k}
\sum_{q_1+q_2+\cdots+q_k=m}
\frac{1}{q_1!}\frac{1}{q_2!}
\cdots\frac{1}{q_k!}.$$
We then get from first principles,
$$[w^m] \sum_{k=1}^m \frac{(-1)^{k+1}}{k}
(\exp(w)-1)^k
\\ = [w^m] \sum_{k=1}^m \frac{(-1)^{k+1}}{k}
\sum_{p=0}^k {k\choose p} \exp(pw) (-1)^{k-p}.$$
We may omit $p=0$ because with $m\ge 1$ there is no contribution to the
coefficient extractor:
$$[w^m] \sum_{k=1}^m \frac{(-1)^{k+1}}{k}
\sum_{p=1}^k {k\choose p} \exp(pw) (-1)^{k-p}
\\ = [w^m] \sum_{p=1}^m (-1)^{p+1} \exp(pw)
\sum_{k=p}^m \frac{1}{k} {k\choose p}
\\ = [w^m] \sum_{p=1}^m \frac{(-1)^{p+1}}{p} \exp(pw)
\sum_{k=p}^m {k-1\choose p-1}.$$
We have for the inner sum
$$\sum_{k=0}^{m-p} {k+p-1\choose p-1}
= [z^{m-p}] \frac{1}{1-z} \sum_{k\ge 0} {k+p-1\choose p-1} z^k
\\ = [z^{m-p}] \frac{1}{1-z} \frac{1}{(1-z)^p}
= [z^{m-p}] \frac{1}{(1-z)^{p+1}}
= {m\choose p}.$$
We thus obtain
$$[w^m] \sum_{p=1}^m \frac{(-1)^{p+1}}{p} \exp(pw) {m\choose p}
= \frac{1}{m} [w^{m-1}]
\sum_{p=1}^m (-1)^{p+1} \exp(pw) {m\choose p}.$$
We get two cases, first case $m=1$, which yields
$$ [w^0] (-1)^2 \exp(w) {1\choose 1} = 1 $$
as desired. For $m\gt 1$, second case, we may restore $p=0$ as we get no contribution to the coefficient extractor in that case:
$$\frac{1}{m} [w^{m-1}]
\sum_{p=0}^m (-1)^{p+1} \exp(pw) {m\choose p}
\\ = - \frac{1}{m} [w^{m-1}] (1-\exp(w))^m = 0$$
because
$$(1-\exp(w))^m = (-1)^m w^m + \cdots.$$
This concludes the argument.