5

Let $X_n= \begin{bmatrix} x_1&x_2&\cdots&x_n\\ x_n&x_1&\cdots&x_{n-1}\\ \vdots&\vdots&\ddots&\vdots\\ x_2&x_3&\cdots&x_1\\ \end{bmatrix} $ be a circulant matrix. It is well known that over $\mathbb{C}$ we have the factorization $\displaystyle\det X_n=\prod_{\zeta^n=1}\left(\sum_{j=0}^{n-1}\zeta^jx_j\right)$. I am interested in how $\det X_n$ factorizes over $ \mathbb{Z}$. For example, we have

$\det X_2=x_1^2-x_2^2=(x_1-x_2)(x_1+x_2)$.

$\det X_3=x_1^3+x_2^3+x_3^3-3x_1x_2x_3=(x_1+x_2+x_3)(x_1^2+x_2^2+x_3^2-x_1x_2-x_1x_3-x_2x_3)$

$\det X_4=(x_1+x_2+x_3+x_4)(x_1-x_2+x_3-x_4)(x_1^2+x_2^2+x_3^2+x_4^2-2x_1x_3-2x_2x_4)$

Conjecture. The number of irreducible factors should be precisely the number of divisors of $n$.

Motivation. The circulant determinant is related to the representation theory of the cyclic group $C_n$ of order $n$, and we have a decomposition of the group ring $\mathbb{Q}[C_n]=\mathbb{Q}[t]/(t^n-1)=\oplus_{d\mid n} \mathbb{Q}[t]/\Phi_d(t) = \oplus_{d\mid n} \mathbb{Q}(e^{2\pi i/d})$.

Observation. We can group together the complex terms using isomorphisms of $\mathbb{Q}(e^{2\pi i/n})$ that by Galois theory should give integral terms.

Question. Is the above conjecture true? If so, what is a good reference with a proof?

(I am unfamiliar with representation theory over $\mathbb{Q}$, and could not find online whether the conjecture is true).

Pedro
  • 125,149
  • 19
  • 236
  • 403
Tomm
  • 71
  • 1
    Yes, simply let $Gal(\Bbb{Q}(\zeta_n)/\Bbb{Q})\subset Aut(\Bbb{Q}(\zeta_n)[x_1,\ldots,x_n]/\Bbb{Q}[x_1,\ldots,x_n])$ act on $\sum_{j=0}^{n-1}\zeta_d^j x_j$ for each $d|n$. – reuns Jan 14 '23 at 21:55
  • @reuns Why are the resulting polynomials irreducible? – Tomm Jan 14 '23 at 21:56
  • If $f\in \Bbb{Q}(\zeta_n)[x_1,\ldots,x_n]$ is irreducible then $F=\prod_{h \in Gal(\Bbb{Q}(\zeta_n)/\Bbb{Q}) f} h$ is irreducible in $\Bbb{Q}[x_1,\ldots,x_n]$: if $u| F$ then some $\sigma(f)$ divides $u$ which implies that every $g(\sigma(f))$ divides $u$, ie. $F$ divides $u$. – reuns Jan 14 '23 at 21:59
  • @reuns I see, thank you. Is this all well known? Can you point me to any reference on this topic? – Tomm Jan 14 '23 at 22:08
  • Mostly that $K[x_1,\ldots,x_n]$ is a UFD. I have been sloppy in the last comment, we should let $Gal(\Bbb{Q}(\zeta_n)/\Bbb{Q})$ act on the prime ideal $(f)$ not on $f$ (try $f=ix_1,n=4$, $f$ and its complex conjugate give the same prime ideal) – reuns Jan 14 '23 at 22:11
  • 1
    @reuns Can you please make your comments into an answer? – Pedro Jan 17 '23 at 10:34

0 Answers0