Let $p$ be a prime, and $\newcommand{\Z}{\mathbb{Z}} (\Z/p\Z)^*$ the multiplicative group $(\Z/p\Z) \setminus \{0\}$. Define $$ f \colon (\Z/p\Z)^* \to (\Z/p\Z)^*, \quad f(x)=x^5. $$
- Show that if $5\mid p-1$ then $|\ker(f)| = 5$.
- Show that if $5\nmid p-1$ then $|\ker(f)| = 1$.
I already know that $|\ker(f)|$ = {$ x \in (\Z/p\Z)^*\mid x^5=1$} and $|\ker(f)| \leq 5$ I was thinking of using that if $x \in (\Z/p\Z)^*, x^{p+1}=1 $ combine to $x \in ker(f)$ then $x^{5}=1$ but $5\nmid p-1$ so $f(\Z/p\Z)$ should be of order $p-1$ ?
And using isomorphism theorem ?
I don't know how to finish