Let $(X, \mathcal X, \mu)$ be a measure space. Let $\mu^*$ be the outer measure induced from $\mu$, i.e., $$ \mu^*(A):=\inf \left\{ \sum_{n=1}^{\infty} \mu (B_n) : (B_n) \subset \mathcal X , A \subset \bigcup_n B_n \right\} \quad \forall A \subset X. $$
Let $\mathcal{M}$ be the collection of all $\mu^*$-measurable sets, i.e., those sets $A \subseteq X$ such that $$ \mu^*(E)=\mu^*(E\cap A) +\mu^*(E\cap A^c) \quad \forall E\subset X. $$
Let $(X, \overline{\mathcal X}, \overline \mu)$ be the completion of $(X, \mathcal X, \mu)$. Then
- $\mathcal M$ is a $\sigma$-algebra on $X$,
- $\mu^*|_{\mathcal M}$ is a complete measure,
- $\mathcal X \subset \overline{\mathcal X} \subset \mathcal M$,
- $\overline \mu = \mu^*|_{\overline{\mathcal X}}$, and $\mu = \overline \mu |_{\mathcal X}$.
I would like to prove a result mentioned in this answer, i.e.,
Theorem If $\mu$ is $\sigma$-finite then $\overline{\mathcal X} = \mathcal M$.
Could you have a check on my attempt?
Proof Fix $A \in \mathcal M$. Let's prove that $A \in \overline{\mathcal X}$. Let $\mathcal N$ be the collection of all subsets of $\mu$-null subsets of $X$, i.e., $$ \mathcal N := \{A \subset X :\exists N \in \mathcal X \text{ such that } A \subset N \text{ and } \mu (N)=0\}. $$
Then $A \in \overline{\mathcal X}$ if and only if $A = B \cup C$ for some $B \in \mathcal X$ and $C \in \mathcal N$.
- $\mu$ is finite.
Because $\mu^* (A) \le \mu^*(X) = \mu (X) < \infty$, for each $n \in \mathbb N$ there is a sequence $(B_{nm})_m \subset \mathcal X$ such that $A \subset \bigcup_m B_{nm}$ and $\mu^* (A) > \sum_{m=1}^{\infty} \mu (B_{nm}) - \frac{1}{n}$. Let $B := \bigcap_n \bigcup_m B_{nm}$. Then $A \subset B \in \mathcal X$ and $\mu^* (A) = \mu (B)$. It follows from $\mu^* (A) < \infty$ that $\mu^* (A')=0$ with $A' := B \setminus A$. With similar reasoning, there is $B' \in \mathcal X$ such that $A' \subset B'$ and $\mu^* (A') = \mu (B')$. It follows that $A' \in \mathcal N$. We have $$ A^c := X \setminus A = (X \setminus B) \cup A'. $$
It follows that $A^c \in \overline{\mathcal X}$ and thus $A \in \overline{\mathcal X}$.
- $\mu$ is $\sigma$-finite.
There is a sequence of $(X_n)$ of pairwise disjoint sets in $\mathcal X$ such that $\bigcup_n X_n = X$ and $\mu (X_n) < \infty$ for all $n$. Let $\mathcal X_n$ be the sub $\sigma$-algebra that $\mathcal X$ induces on $X_n$, i.e., $\mathcal X_n := \{A \cap X_n : A \in \mathcal X\}$. Let $\mu_n$ be the restriction of $\mu$ to $\mathcal X_n$, i.e., $\mu_n (A) := \mu (A)$ for all $A \in \mathcal X_n$. We construct the corresponding objects $(\mu^*_n, \mathcal M_n, \overline{\mathcal X_n}, \overline{\mu_n})$ from the measure space $(X_n, \mathcal X_n, \mu_n)$.
Clearly, $\mu_n$ is finite. We need the following lemmas, i.e.,
Let $A_n := A \cap X_n$. By Lemma 1, $A_n \in \mathcal M_n$. By (1.), $\overline{\mathcal X_n} = \mathcal M_n$. So $A_n \in \overline{\mathcal X_n}$. By Lemma 2, $\overline{\mathcal X_n} \subset \mathcal{\overline X}$. This implies $A_n \in \mathcal{\overline X}$ for all $n$. On the other hand, $A = \bigcup_n A_n$. It follows that $A \in \mathcal{\overline X}$. This completes the proof.