Let $\Sigma_\text{p} : (\mathbb{N} \to \mathbb{C}) \rightharpoonup \mathbb{C}$ where $\Sigma_\text{p}(a)$ is the analytic continuation of the power series $\sum_{n=0}^\infty a_n x^n$ to $x=1$, when the latter exists. Examples: \begin{array}{l|l|l|l} a_n & a & f(x) & f(1) = \Sigma_\text{p}(a) \\ \hline 2^n & 1, 2, 4, 8, 16, \ldots & \frac{1}{1-2x} & -1 \\ 3^n (n+1) & 1, 6, 27, 108, 405, \ldots & \frac{1}{(1-3x)^2} & \frac{1}{4} \\ \binom{2n}{n} & 1, 2, 6, 20, 70, \ldots & \frac{1}{\sqrt{1-4x}} & -\frac{i}{\sqrt{3}} \\ \text{Fibonacci}_n & 0, 1, 1, 2, 3, \ldots & \frac{x}{1-x-x^2} & -1 \\ \text{Motzkin}_n & 1, 1, 2, 4, 9, \ldots & \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2} & -i \end{array}
$\sum_{n=0}^\infty a_n = \Sigma_\text{p}(a)$ when the LHS exists. Thus we can extend the definition of summation to some divergent series by defining the LHS as the RHS.
Under this definition, sequences of natural numbers can "sum" to negative, fractional, irrational, and even imaginary numbers. Are there "simple" (ideally, closed-form) sequences of natural numbers that sum to the following constants?
- Pythagoras' constant $\sqrt{2}$
- the imaginary unit $i$
- the golden ratio $\phi$
- Euler's number $\mathrm{e}$
- Archimedes' constant $\pi$
- Euler's constant $\gamma$
- Apéry's constant $\zeta(3)$
If necessary, analytic continuation of other series like Dirichlet series or general Dirichlet series may be used. For example, let $\Sigma_\text{D} : (\mathbb{N} \to \mathbb{C}) \rightharpoonup \mathbb{C}$ where $\Sigma_\text{D}(a)$ is the analytic continuation of the Dirichlet series $\sum_{n=0}^\infty a_n n^{-x}$ to $x=0$, when the latter exists. (See this question.)