I am trying to prove that $\frac{n!}{n^n}$ converges to $0$.
I write the sequence as $$\frac{n!}{n^n} = \frac{1 \cdot 2 \cdot 3 \ldots n }{n \cdot n \cdot n \ldots n}$$ Next I break the expression into $$(\frac{1}{n}) \cdot (\frac{2}{n}) \cdot (\frac{3}{n}) \ldots (\frac{n-1}{n}) \cdot (\frac{n}{n})$$ Here comes my issue: the terms when taken from the beginning are $(\frac{1}{n})$, $(\frac{2}{n})$ and so on all converge to $0$. But when taken from the end the terms $(\frac{n}{n})$, $(\frac{n-1}{n})$, $(\frac{n-2}{n})$ and so on, all converge to $1$.
How is that possible?