Let $u(\mathbf{x})=u(x_1, x_2)$ be a harmonic function in $\mathbb{R}^2$. That is $$\Large \Delta_\mathbf{x} u(\mathbf{x})=0\tag1$$ I must prove that, fixed $\mathbf{y}\in\mathbb{R}^2$, the function $$u(\mathbf{x}-\mathbf{y})$$ is also harmonic in $\mathbb{R}^2.$ That is we must prove that $$\Large\Delta_\mathbf{x}[u(\mathbf{x}-\mathbf{y})]=0\tag2$$
We consider the trasformation $h\colon \mathbb{R}^2\to \mathbb{R}^2$ defined as $$h(\mathbf{x})=\mathbf{\tilde{x}}=\mathbf{x}-\mathbf{y}.$$ therefore $$u(\mathbf{x}-\mathbf{y})=u\circ h(\mathbf{x})$$
Then we have that $$\Large \frac{\partial u(\mathbf{x-y})}{\partial x_i}=\frac{\partial u}{\partial\tilde{x_i}}(\mathbf{x}-\mathbf{y}),\quad i=1,2.$$ And therefore
$$\Large \Delta_\mathbf{x} [u(\mathbf{x}-\mathbf{y})]=[\Delta_{\tilde{\mathbf{x}}}u](\mathbf{x}-\mathbf{y}) $$
Can I conclude that $$\Large [\Delta_{\tilde{\mathbf{x}}}u](\mathbf{x}-\mathbf{y})=[\Delta_{\mathbf{\tilde{x}}}u](\mathbf{\tilde{x}})=0?$$ Since $(1)$ holds, how can i deduce this?
It is true or false that $$\Large [\Delta_{\mathbf{\tilde{x}}}u](\mathbf{\tilde{x}})=0?$$ If yes, why?
who are the old and new variables?