A physicist's approach:
Multiply the integrand by $\frac{1-x}{1-x}$ to get
$$\int _{-\pi}^{\pi}\frac{(1-x)\sin (x)}{1-x^2}dx$$
Introduce 2 parameters, $t$ and $a$
$$I(t)=\int _{-\pi}^{\pi}\frac{(1-x)\sin (xt)}{1+a^2x^2}dx$$
To return to the original integral set $t=1$ and $a=i$ where $i$ is the imaginary unit.
Take the Laplace Transform:
$$\mathcal{L} I(t)=\int _{-\pi}^{\pi}\frac{(1-x)x}{(1+a^2x^2)(s^2+x^2)}dx$$
(i will skip elementary integration and algebraic procedures)
$$\mathcal{L} I(t)=2\frac{\arctan(a\pi)-as\arctan(\frac{\pi}{s})}{a(a^2s^2-1)}$$
Now, set $a=i$ and get
$$\mathcal{L} I(t)=\int _{-\pi}^{\pi}\frac{x}{(1+x)(s^2+x^2)}dx=\frac{2s}{s^2+1}\arctan\left(\frac{\pi}{s}\right)-\frac{\ln\frac{\pi+1}{\pi-1}}{s^2+1}+\frac{\pi}{s^2+1}i$$
The imaginary part of the result is different from zero and this indicates that the integral diverges. The real part gives the Cauchy principal value (shortly $P V$)
Compactly:
$$PV\int _{-\pi}^{\pi}\frac{x}{(1+x)(s^2+x^2)}dx=\frac{2s}{s^2+1}\arctan\left(\frac{\pi}{s}\right)-\frac{\ln\frac{\pi+1}{\pi-1}}{s^2+1}$$
Now all that remains is to calculate the inverse Laplace transform of the last result. We use for this an Inverse Laplace transform table.
Final result:
$$PV\int _{-\pi}^{\pi}\frac{\sin (xt)}{1+x}dx=2\int _{0}^{t}\cos(t-\tau)\frac{\sin (\pi\tau)}{\tau}d\tau-\sin (t)\ln\frac{\pi+1}{\pi-1}$$
To get the Cauchy principal value for the original integral set $t=1$ here.