Let $f(x) = \frac{1}{\sqrt{|\sin 2 \pi x|}}$, and take $$F(x) = \sum_{k=1}^\infty \frac{f(kx)}{k^2}.$$ Show that $F$ is finite a.e.
It is enough to show that $\int_n^{n+1} F(x) \, dx < \infty$ for all $n \in \mathbb{Z}$. Note that $$\int_{n}^{n+1} F(x) \, dx = \sum_{k=1}^\infty \frac{1}{k^2} \int_n^{n+1} f(kx) \, dx.$$ If we can show that this integral is finite, then we are done. But we calculate $$\int_n^{n+1} f(kx) \, dx = \int_n^{n+1} \frac{1}{\sqrt{|\sin 2 \pi kx|}} \, dx = \int_0^1 \frac{1}{\sqrt{|\sin 2 \pi kx|}} \, dx \\ = \frac1k \int_0^k \frac{1}{\sqrt{|\sin 2 \pi x|}} \, dx = \int_0^1 \frac{1}{\sqrt{|\sin 2 \pi x|}} \, dx,$$ where we used the periodicity of $f$. But the problem is I do not think this integral is finite.