0

I'm trying to find the norm of this operator:

$$\begin{aligned} T:(C[0,1], &||\cdot||_1) &&\rightarrow \quad (C[0,1], ||\cdot||_1) \\ &f &&\mapsto \quad Tf(t):= \int_0^t f(s)ds \end{aligned}$$

And here's my current progress: $$\begin{aligned} ||Tf||_1 = \int_0^1 \left| \int_0^tf(s)ds\right|dt &\leq \int_0^1 \left( \int_0^t|f(s)|ds\right) dt \\ &\leq \int_0^1 ||f||_1 dt =||f||_1. 1 \end{aligned}$$

I'm having difficulties to find a function such that $||Tf||_1 = ||f||_1.1$

Any guidance is appreciated, thanks!

Alper
  • 1

0 Answers0