At first, I wanted to evaluate this integral [this is not the integral in question] $$I=\int_0^{\frac{\pi}{2}}x\sqrt{\tan x}\space dx=\int_0^\infty\frac{2x^2\arctan{x^2}}{x^4+1}dx $$ I substituted $u=\sqrt{\tan x}$ and I followed up by parametrizing $$F(t)=\int_0^\infty\frac{x^2\arctan{tx^2}}{x^4+1}dx$$$$I=2F(1)$$ $F(t)$ can be evaluated with Leibniz's rule fairly easily. Differentiate, evaluate, then integrate, as normal. $$F(t)=\int_0^\infty\frac{x^2\arctan{tx^2}}{x^4+1}dx=\frac{\pi}{2\sqrt2}\ln{(\sqrt t+1)}-\frac{\pi}{4\sqrt2}\ln{(t+1)}+\frac{\pi}{2\sqrt2}\arctan(t)$$
Here, I noticed that $\int_0^{y^2} \frac{F(t)}{t}dt$ yields a nice result. $$\int_0^\infty\frac{x^2}{x^4+1}\int_0^y\ \frac{\arctan{(tx^2)}}{t}\space dt\space dx$$$$=\frac{\pi}{2\sqrt2}\int_0^y\frac{\ln{(\sqrt t+1)}}{t}dt-\frac{\pi}{4\sqrt2}\int_0^y\frac{\ln{(t+1)}}{t}dt+\frac{\pi}{2\sqrt2}\int_0^y\frac{\arctan(t)}{t}dt$$ This results in the following $$\int_0^\infty\frac{x^2\operatorname{Ti}_2(x^2y^2)}{x^4+1}dx=-\frac{\pi}{\sqrt2}\operatorname{Li}_2(-y)+\frac{\pi}{4\sqrt2}\operatorname{Li}_2(-y^2)+\frac{\pi}{\sqrt2}\operatorname{Ti}_2(y)$$ A special case is $y=1$, which is the integral in question. $$\int_0^\infty\frac{x^2\operatorname{Ti}_2(x^2)}{x^4+1}dx=\frac{\pi^3}{16\sqrt2}+\frac{\pi G}{\sqrt2}$$ Where $G$ is Catalan's constant
How else can this result be achieved?