This is not true. When the constraint $A_i^2<B_i^2$ is relaxed to $A_i^2\le B_i^2$, there is a random counterexample:
$$
\begin{aligned}
&A_1=\pmatrix{0.2144&0\\ 0&0.8922},
\ A_2=\pmatrix{0.3455&-0.2883\\ -0.2883&0.8029},
\ A_3=\pmatrix{0.7817&-0.2633\\ -0.2633&0.5608},\\
&B_1=\pmatrix{0.273970&0.013878\\ 0.013878&0.897168},
\ B_2=\pmatrix{0.4402&-0.2299\\ -0.2299&0.8401},
\ B_3=\pmatrix{0.7818&-0.2635\\ -0.2635&0.5620}\\
\end{aligned}
$$
where
$$
\frac{\|A_1A_2A_3\|_F}{\|B_1B_2B_3\|_F}-1=0.020842>0.
$$
So, if we replace each $B_i$ by $(B_i^2+\epsilon I)^{1/2}$ for a sufficiently small $\epsilon>0$, we obtain a counterexample with $A_i^2<B_i^2$.
Counterexamples like this (subject to the relaxed constraint) can be obtained easily by rejection sampling. Here is my Octave/Matlab script:
n=2; % order of the matrices
t=.05; % some small positive constant
for k=1:10000,
[U,S,V]=svd(2rand(n,n)-1); % SVD of a random matrix
AA1=diag(rand(n,1)); % A_1^2
AA2=Udiag(rand(n,1))U';
AA3=Vdiag(rand(n,1))V';
x=2rand(n,1)-1;
y=2rand(n,1)-1;
z=2rand(n,1)-1;
B1=sqrtm(AA1+txx'); % thus B_1^2>=A_1^2
B2=sqrtm(AA2+tyy');
B3=sqrtm(AA3+tzz');
A1=sqrtm(AA1);
A2=sqrtm(AA2);
A3=sqrtm(AA3);
r=norm(A1A2A3,'fro')/norm(B1B2B3,'fro')-1;
if r>0,
A1,A2,A3,B1,B2,B3,r,break;
end;
end