The sum of the series : $\frac{1}{1!}+\frac{1+2}{2!}+\frac{1+2+3}{3!}+...$ equals
A) e
B) $\frac{e}{2}$
c) $\frac{3}{2}e$
D) $1+\frac{e}{2}$
I need a hint to deal with this sum, I understood, since the sum of the first n natural number is $\frac{n(n+1)}{2}$, so the $n^{th}$ term of the series is $\frac{\frac{n(n+1)}{2}}{n!}=\frac{n(n+1)}{2n!}$, how should I use this to get the sum...
Thanks in advance!!