I've been strugrilling trying to prove the following results from Lee's book on Topological Manifolds.
Proposition 1. Let $f:X\to Y$ be a function between topological spaces.
$f$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)}$ for all $A \subseteq X$.
$f$ is closed if and only if $\overline{f(A)} \subseteq f(\overline{A})$ for all $A \subseteq X$.
$f$ is continuous if and only if $f^{-1}(\mbox{int}B) \subseteq \mbox{int} f^{-1}(B)$ for all $B \subseteq Y$.
$f$ is open if and only if $\mbox{int} f^{-1}(B) \subseteq f^{-1}(\mbox{int}B)$ for all $B \subseteq Y$.
For the first one, we need the following result
Proposition 2. Let $f: X \to Y$ be a function between topological spaces. The following are equivalent
$f$ is continuous.
For each $x \in X$ and every neighborhood $V$ of $f(x)$, there is a neighborhood $U$ of $x$ such that $f(U) \subseteq V$.
For every subset $B$ of $Y$, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$.
To prove the first part of proposition 1. ($\Rightarrow$) Let $A \subseteq X$ and let $x \in \overline{A}$. Let $V$ be a neighborhood of $f(x)$ and let $U$ be a neighborhood of $x$ such that $f(U) \subseteq V$. Since $x \in \overline{A}$, $U \cap A \neq \emptyset$ and hence $\emptyset \neq f(U \cap A) \subseteq f(U)\cap f(A) \subseteq V \cap f(A)$. Thus, every neightborhood of $f(x) \in \overline{f(A)}$ and $f(\overline{A}) \subseteq \overline{f(A)}$.
($\Leftarrow$) Let $A = f^{-1}(B)$. Then, $f(\overline{A}) \subseteq \overline{f(A)} = \overline{f(f^{-1}(B))} = \overline{B}$. Hence, $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B})$. Which is equivalent to $f$ being continuous. $\Box$
I'm unsure how to proceed with the other statements. Thanks in advance!