My Solving Idea
I would solve it by assuming that we can split $f$ into a homogeneous solution $f_{h}$ and a particular solution $f_{p}$ such that $f\left(
x \right) = c \cdot f_{h}\left(
x \right) + f_{p}\left(
x \right)$, where $c$ is a constant.
With the assumption and the fact that the Fractional Differential Equation (FDE) is linear and homogeneous, we can solve
$$
\begin{align*}
\operatorname{D}\limits^{\alpha}\left( f\left( x \right) \right) &= g\left( x \right) \cdot f\left( x \right)\\
\end{align*}
$$
for $f_{h}$ and $f_{p}$.
Solving for the Homogeneous Solution $f_{h}$
Derivation of the solution
$\small{\text{assuming that g is a constant}}$ Composing the characteristic equation gives:
$$
\begin{align*}
\operatorname{D}\limits^{\alpha}\left( \exp\left( \lambda \cdot x \right) \right) - g\left( x \right) \cdot \exp\left( \lambda \cdot x \right) &= 0\\
\lambda^{\alpha} \cdot \exp\left( \lambda \cdot x \right) - g\left( x \right) \cdot \exp\left( \lambda \cdot x \right) &= 0\\
\left( \lambda^{\alpha} - g\left( x \right) \right) \cdot \exp\left( \lambda \cdot x \right) &= 0\\
\lambda^{\alpha} - g\left( x \right) &= 0\\
\lambda^{\alpha} &= g\left( x \right)\\
\lambda &= \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \left( \operatorname{cis}\left( \arg\left( g\left( x \right) \right) \right) \right)^{\frac{1}{\alpha}}\\
\lambda &= \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \operatorname{cis}\left( \frac{1}{\alpha} \cdot \arg\left( g\left( x \right) \right) \right)\\
\lambda_{k} &= \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \operatorname{cis}\left( \frac{1}{\alpha} \cdot \left( \operatorname{Arg}\left( g\left( x \right) \right) + 2 \cdot k \cdot \pi \right) \right)\\
\lambda_{k} &= \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \operatorname{cis}\left( \frac{\operatorname{Arg}\left( g\left( x \right) \right)}{\alpha} + \frac{2}{\alpha} \cdot k \cdot \pi \right)\\
\end{align*}
$$
where k is an intiger ($k \in \mathbb{Z}$), $\arg$ is the Complex Argument Function, $\operatorname{Arg}\left( z \right)$ is the Argument of $z$ wich is the closest to $0$ and $\operatorname{cis}$ is the CIS Function (another name for the complex exponential) given by $\operatorname{cis}\left( z \right) = \cos\left( z \right) + i \cdot \sin\left( z \right) = \exp\left( z \cdot i \right)$ (where $i^{2} = -1$) according to Euler's Formula.
This means that the roots of the equation are $\lambda_{k} = \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \cos\left( \frac{\operatorname{Arg}\left( g\left( x \right) \right)}{\alpha} + \frac{2}{\alpha} \cdot k \cdot \pi \right) + \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \sin\left( \frac{\operatorname{Arg}\left( g\left( x \right) \right)}{\alpha} + \frac{2}{\alpha} \cdot k \cdot \pi \right) \cdot i$ aka if $g\left( x \right) \ne 0$ $\lambda^{\alpha} - g\left( x \right) = \prod\limits_{k = 1}^{\left| \mathbb{S} \right|}\left[ \lambda + \sqrt[\alpha]{\left| g\left( x \right) \right|} \cdot \operatorname{cis}\left( \frac{\operatorname{Arg}\left( g\left( x \right) \right)}{\alpha} + \frac{2}{\alpha} \cdot k \cdot \pi \right) \right]$ where $\mathbb{S}$ is the set of all roots of the equation and $\left| \mathbb{S} \right|$ is the cardinality of $\mathbb{S}$. This gives the multiplicity of the all roots $= 1$ for $\alpha \ne 0$. That means that if $\alpha \in \mathbb{N} \implies \mathbb{S} = \alpha$.
With $f_{h}\left( x \right) = Q_{0}\left( x \right) \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \cos\left( \Im\left( \lambda_{k} \right) \cdot x \right) + P_{0}\left( x \right) \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \sin\left( \Im\left( \lambda_{k} \right) \cdot x \right)$ where $\Re$ is the Real Part and $\Im$ is the Imaginary Part we'll get
$$
\begin{align*}
f_{h,\, k}\left( x \right) &= c_{2 \cdot k} \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \cos\left( \Im\left( \lambda_{k} \right) \cdot x \right) + c_{2 \cdot k + 1} \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \sin\left( \Im\left( \lambda_{k} \right) \cdot x \right)\\
f_{h}\left( x \right) &= \sum\limits_{k = 1}^{\left| \mathbb{S} \right|}\left[ c_{2 \cdot k} \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \cos\left( \Im\left( \lambda_{k} \right) \cdot x \right) + c_{2 \cdot k + 1} \cdot \exp\left( \Re\left( \lambda_{k} \right) \cdot x \right) \cdot \sin\left( \Im\left( \lambda_{k} \right) \cdot x \right) \right]\\
f_{h}\left( x \right) &= \sum\limits_{k = 1}^{\left| \mathbb{S} \right|}\left[ f_{h,\, k}\left( x \right) \right]\\
\end{align*}
$$
where all $c$s are constansts.
Criticism of the Solution
However, this solution has a problem. For each non-real $\alpha$ ($\alpha \notin \mathbb{Q}$) it gives infinitely many roots as a solution, making $\left| \mathbb{S} \right|$ tends to infinity and thus the homogeneous solution for this $\alpha$ does not takes a closed form (if $g\left( x \right) \ne 0$). However, for all real $\alpha$ ($\alpha \in \mathbb{Q}$) it takes a closed form.
Solving for the Particular Solution $f_{p}$
Since it is a homogeneous FDE, it has no particular solution aka $f_{p} = 0$.
Proving $f\left( x \right) = f\left( 0 \right) \cdot \operatorname{E}_{\alpha}\left( \alpha \cdot \int\limits_{0}^{x} \left( x - y \right)^{\alpha - 1} \cdot g\left( y \right)\, \operatorname{d}y \right)$
Criticism of the Solution
The solution excludes quite a few trivial functions $f\left( x \right)$, like all $f\left( x \right)$ that are not defined for $x = 0$, e.g $f\left( x \right) = \ln\left( x \right)$, $f\left( x \right) = \frac{1}{x}$, $f\left( x \right) = x^{x}$, ...
But that also means that we cannot prove it if we have just disproved it for a few examples as long as I'm not wrong here.
Conditions for $\operatorname{E}_{\alpha}\left( \left( x + y \right)^{\alpha} \right) = \operatorname{E}_{\alpha}\left( x^{\alpha} \right) \cdot \operatorname{E}_{\alpha}\left( y^{\alpha} \right)$ to beeing True
There are a few simple conditions that must be met in order for the expressions to remain defined, e.g. if $x = -y$ or $x = 0 ~\vee~ 0 = y$ then $\alpha > 0$ (since division by $0$ is undefined and $0^{0}$ is also undefined) and $\alpha \in \mathbb{R}^{+}$ or $\Im\left( \alpha \right) = 0$ (since $0$ to the power of any or most imaginary unit / units is not defined). I don't see any other conditions. However, I am unable to derive it or provide a general proof of it. This is probably material for another question on stackexchange.