You need to use the Borel-Cantelli lemma and show that $\sum \limits_{n=0}^{\infty} \mathbb{P}\big(\sup \limits_{n \le t \le n+1} |B_t - B_n| \ge \sqrt{n}\big) < \infty$.
Assuming this result holds, then the lemma ensures that almost surely, $\sup \limits_{n \le t \le n+1} |B_t - B_n| < \sqrt{n}$ for all but finitely many $n$.
Proof of the summability: it is equivalent to showing that $\sum \limits_{n=0}^{\infty} \mathbb{P}\big(S \ge \sqrt{n}\big) < \infty$, where $S = \sup \limits_{0 \le t \le 1} |B_t|$, since $\sup \limits_{n \le s \le n+1} |B_s - B_n|$ has the same distribution as $S$ for all $n$.
Less is known about $S$ than about $M_1 = \sup \limits_{0 \le t \le 1} B_t$, so we will first find a bound for $\mathbb{P}(S \ge x)$. Without using the exact formula, we can write:
\begin{align*}
\mathbb{P}(S \ge x) & = \mathbb{P}\Big(\big(\sup \limits_{0 \le t \le 1} S_t \ge x\big) \cup \big(\inf \limits_{0 \le t \le 1} S_t \le -x\big)\Big) \\
& \le \mathbb{P}\Big(\sup \limits_{0 \le t \le 1} S_t \ge x\Big) + \mathbb{P}\Big(\inf \limits_{0 \le t \le 1} S_t \le -x\Big) \\
& \le 2 \mathbb{P}\Big(\sup \limits_{0 \le t \le 1} S_t \ge x\Big) \\
& \le 2 \mathbb{P}\big(|B_1| \ge x\big)
\end{align*}
since it is well-known the running maximum is a half-normal. Using a standard bound on the upper tail of a normal distribution, we get $\mathbb{P}\big(S \ge x\big) \le \frac{4\exp(-x^2/2)}{x\sqrt{2\pi}}$. Hence $\sum \limits_{n=1}^{\infty} \mathbb{P}\big(S \ge \sqrt{n}\big) \le \sum \limits_{n=1}^{\infty} \frac{4\exp(-n/2)}{\sqrt{2\pi n}} < \infty$.