1

Let $f(x)=\frac{Kx}{K^2+x^2}$ where K is some constant, show this is continuous on $\mathbb{R}$.

Here are my scratch work in looking for a delta. let $x,y\in \mathbb{R} $ WTS $|\frac{Kx}{K^2+x^2}-\frac{Ky}{K^2+y^2}|<\epsilon,\forall \epsilon>0$ whenever $|x-y|<\delta$. So, $|\frac{Kx}{K^2+x^2}-\frac{Ky}{K^2+y^2}|=|K||\frac{x(K^2+y^2)-y(K^2+x^2)}{(K^2+y^2)(K^2+x^2)}|\leq |\frac{xK^2-yK^2+xy^2-yx^2}{(K^2+y^2)(K^2+x^2)}|\leq|\frac{xK^2-yK^2+xy^2}{(K^2+y^2)(K^2+x^2)}|$ I'm a bit stuck here on how to relate this inequality to $|x-y|$. Can someone help out? Thanks!

Remu X
  • 1,117
  • 1
    The epsilon-delta method is really not what comes to mind for your goal. If it is mandatory, you should make it explicit in the post, maybe even in the title. – Anne Bauval Oct 11 '22 at 06:02
  • @AnneBauval, Hi thanks for the comment! it is not mandatory, would you mind letting me know what method you would use here? Should I maybe show it is differentiable instead? – Remu X Oct 11 '22 at 06:04
  • 1
    Show that any rational function is continuous on the set of points it is defined (i.e. where the denominator is not zero). For that, start with polynomials and then prove that $1/x$ is continuous for $x \in \mathbb{R}-{0}$. – Léo Lessa Oct 11 '22 at 06:09
  • 2
    Ask google "every rational function is continuous" – Anne Bauval Oct 11 '22 at 06:11
  • We can't mark this question as a "duplicate" of that one as long as there is no accepted or upvoted answer overthere. – Anne Bauval Oct 11 '22 at 07:52
  • 1
    You have to correct your "$K|\frac{x(K^2+y^2)-y(K^2+x^2)}{(K^2+y^2)(K^2+x^2)}|\leq |\frac{xK^2-yK^2+xy^2-yx^2}{(K^2+y^2)(K^2+x^2)}|\leq|\frac{xK^2-yK^2+xy^2}{(K^2+y^2)(K^2+x^2)}|$": $K$ is missing in the 2nd and 3rd expression, and the 2nd inequality has no reason to hold. – Anne Bauval Oct 11 '22 at 10:04
  • 1
    Moreover, $K$ sould be replaced by $|K|$. – Anne Bauval Oct 11 '22 at 10:10

3 Answers3

3

Though you agreed to use a more appropriate general argument (see comments), let us finish your $\epsilon-\delta$-proof (assuming $K\ne0$).

You were stuck on how to relate the inequality $$\left|\frac{Kx}{K^2+x^2}-\frac{Ky}{K^2+y^2}\right|\le|K|\left|\frac{xK^2-yK^2+xy^2-yx^2}{(K^2+y^2)(K^2+x^2)}\right|$$ to $|x−y|.$ Just factorize it in the numerator: $xK^2-yK^2+xy^2-yx^2=(x-y)(K^2-xy)$ hence for $|x-y|<\delta$, $$\left|\frac{Kx}{K^2+x^2}-\frac{Ky}{K^2+y^2}\right|\le\delta|K|M\quad\text{where}\quad M:=\frac{K^2+|xy|}{(K^2+y^2)(K^2+x^2)}$$ and you just need to bound $M$. If you only want to prove the continuity at any fixed point $x$, you can end up like this: wlog $\delta<1$, so that $$M\le\frac{K^2+|x|(|x|+1)}{K^4}.$$ But you can even prove that $f$ is uniformly continuous: $$M\le\frac{K^2}{K^4}+\frac{|xy|}{K^2(x^2+y^2)}\le\frac1{K^2}+\frac1{2K^2}.$$

Anne Bauval
  • 49,005
2

Since you are asking a solution by any method, you can try to use the limit definition of continuity. Recall that a function $f$ is continuous at a point $c$ of its domain if $$\lim_{x\rightarrow c} f(x) = f(c)$$

So for any $c\in \mathbb{R}$ we have $\lim_{x\rightarrow c}Kx = Kc$ and $\lim_{x\rightarrow c} K^2+x^2 = K^2+c^2 \neq 0$. So we have:$$ f(c) = \frac{Kc}{K^2+c^2} = \frac{\lim_{x\rightarrow c}Kx}{\lim_{x\rightarrow c}K^2+c^2} = \lim_{x\rightarrow c}\frac{Kx}{K^2+x^2} = \lim_{x\rightarrow c} f(x) $$

Hagamena
  • 347
  • 1
  • 9
1

Since you started your proof attempting to use the $\epsilon$-$\delta$ definition here is a hint. One can proceed in the following way:

  1. If $K=0$, then $f(x)=0$ for all $x$ and the proof is trivial.

  2. If $K\neq 0$, then we can express:

$$f(x)=\frac{x/K}{1+x^2/K^2}$$.

The $\epsilon$-$\delta$ proof is a bit laborious, but my best guess is that $$\delta(\epsilon,y)=\frac{-(\frac{y^2}{K^2}+\frac{1}{{|K|}})+\sqrt{\frac{y^4}{K^4}+\frac{2y^2}{{|K|}^3}+\frac{1+4\epsilon y}{K^2}}}{2|y|/K^2}$$

should do the trick. Do you see why?


Details:

Let $|x-y|<\delta(\epsilon,y)$. Then:

$$ \begin{align} |f(x)-f(y)|&=\left|\frac{x-y}{K}+\frac{xy}{k^2}(y-x)\right|\\ &\leq \left|\frac{x-y}{K}\right|+\left|\frac{xy}{K^2}(y-x)\right|\\ &=\frac{\left|x-y\right|}{\left|K\right|}\left|1-\frac{xy}{K}\right|\\ &\leq\frac{\left|x-y\right|}{\left|K\right|}\left(1+\frac{\left|xy\right|}{\left|K\right|}\right)\\ &<\frac{\delta(\epsilon,y)}{\left|K\right|}\left(1+\frac{\left|xy\right|}{\left|K\right|}\right)\\ &<\frac{\delta(\epsilon,y)}{\left|K\right|}\left(1+\frac{\left|\delta(\epsilon,y)y+y^2\right|}{\left|K\right|}\right)\\ &\leq\frac{\delta(\epsilon,y)}{\left|K\right|}\left(1+\frac{\delta(\epsilon,y)|y|+y^2}{\left|K\right|}\right)\\ &=\delta^2(\epsilon,y)\frac{y}{K^2}+\delta(\epsilon,y)\left(\frac{y^2}{K^2}+\frac{1}{\left|K\right|}\right)\\ &=\epsilon \\ \end{align} $$