We could do the following. Denoting $\displaystyle \rho_0(x)=\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$
$$I_1=\int_{-\infty}^\infty\rho_0(x)\,e^{xt}\cos(\omega xt)\, dx=\frac{1}{\sqrt{2\pi}}\Re\int_{-\infty}^\infty e^{-x^2/2+xt+i\omega t x}\, dx$$
Making the substitution $x=ts$
$$=\frac{t}{\sqrt{2\pi}}\Re\int_{-\infty}^\infty e^{-s^2t^2/2+t^2s+t^2i\omega s}\, ds=\Re\frac{t\,e^{\frac{t^2(1+i\omega)^2}{2}}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac{t^2(s-1-i\omega)^2}{2}}\, ds$$
Making the substitution $s\to s-1$
$$I_1=\Re\frac{t\,e^{\frac{t^2(1+i\omega)^2}{2}}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac{t^2(s-i\omega)^2}{2}}\, ds$$
Now we can change the integration path in the complex plane, switching from $s$ to $s-i\omega$.
Formally it comes from the consideration of the closed rectangular contour, clockwise (at $R\to\infty$): $-R\to R\to R-i\omega\to-R-i\omega\to-R$.
There are no singularities inside the contour; therefore, $\oint=0$.
We also note that the side integrals tend to zero as $R\to \infty$; for example,
$$\Big|\int_R^{R-i\omega}e^{-\frac{t^2(z-i\omega)^2}{2}}\, dz\Big|=\Big|\int_{-\omega}^0e^{-\frac{t^2(R^2+2iyR-y^2)}{2}}\, dy\Big|<\omega\,e^{-\frac{t^2R^2}{2}+\frac{t^2\omega^2}{2}}\to 0\,\,\text{at}\,\,R\to\infty$$
Therefore,
$$I_1=\Re\frac{t\,e^{\frac{t^2(1+i\omega)^2}{2}}}{\sqrt{2\pi}}\int_{-\infty}^\infty e^{-\frac{t^2s^2}{2}}\, ds=e^{\frac{t^2(1-\omega^2)}{2}}\Re e^{i\omega t^2}=e^{\frac{t^2(1-\omega^2)}{2}}\cos(\omega t^2)\tag{1}$$
Now, we can present $\rho_t(x)$ in the form
$$\rho_t(x)=\rho_0(x)g(x,t);\,\,g(x,t)\to 1 \,\,\text{at}\,\, t\to\infty$$
We will use the condition of uniform convergence to proceed (it would also be interesting to see a rigorous prove for a weaker condition - of pointwise convergence alone). So, we suppose that at $t>T_0\,$ there is such $\epsilon(T_0)\,$ that $\,\,\displaystyle 1-\epsilon (T_0)<g(x,t)<1+\epsilon(T_0)\,\,$ for all $x\in(-\infty;\infty)$.
Evaluating also
$$I_2=\int_{-\infty}^\infty\rho_0(x)\,e^{xt}\, dx=e^{\frac{t^2}{2}}\tag{2}$$
we can make the following evaluation of the integrals ratio for all $t>T_0$
$$0<\frac{\big|\int_{-\infty}^\infty\rho_t(x)\,e^{xt}\cos(\omega xt)\, dx\big|}{\int_{-\infty}^\infty\rho_t(x)\,e^{xt}\, dx}<\frac{1+\epsilon}{1-\epsilon}\bigg|\frac{I_1}{I_2}\bigg|=\frac{1+\epsilon}{1-\epsilon}\,\bigg|\frac{e^{\frac{t^2(1-\omega^2)}{2}}\cos(\omega t^2)}{e^{\frac{t^2}{2}}}\bigg|$$
$$<\frac{1+\epsilon}{1-\epsilon}e^{-\frac{t^2\omega^2}{2}}\to0\,\,\text{at}\,\,t\to\infty\,\, \text{and}\,\,\omega\neq 0$$