How to show that $$\lim_ {x\to 0} \frac{e^{-x^{-2}}}{x^{r}}=0$$ for $r\in \mathbb N.$
My attempt: If I apply l'hospital rule then $\lim_ {x\to 0} \frac{e^{-x^{-2}}}{x^{r}}=\lim_ {x\to 0} \frac{e^{-x^{-2}} 2x^{-3}}{rx^{r-1}}$. But it is again $(0/0)$ form...
Motivation: This has a connection to mollifier