Let $p$ be an odd prime. Compute $\sum_{k=0}^{(p-1)/2} \dfrac{(p-1)!}{(k!)^2(p-1-2k)!}\mod p.$
For an odd prime p, let $S(p) = \sum_{k=0}^{(p-1)/2} \dfrac{(p-1)!}{(k!)^2(p-1-2k)!}$. Note that we may assume $p\equiv 1, 5\mod 6,$ since for $p=3$, we have $S(p) = \sum_{k=0}^1 \dfrac{2}{(k!)^2(2-2k)!} = 1+2 = 3\equiv 0\mod p.$ Computing a few more values, we get $S(5) = 4!(1 + 1/(1!^2\cdot 2!) + 1/(2!^2 \cdot 0!)) \equiv 2\mod 5, S(7) = 6! (1 + 1/(1!^2 \cdot 4!) + 1/(2!^2 \cdot 2!) + 1/(3!^2 \cdot 0!)) \equiv 6\mod 7.$ All congruences in this problem will be modulo p for simplicity. First consider the case where $p\equiv 1\mod 6$ and write $p= 6r + 5$ for some $r\ge 0$. Then $(p-1)/2 = 3r+2.$
We have $S(p) = \sum_{k=0}^{(p-1)/2} \dfrac{(p-1)(p-2)\cdots (p-2k)}{(k!)^2} \equiv \sum_{k=0}^{(p-1)/2} \dfrac{(2k)!(-1)^{2k}}{(k!)^2} = \sum_{k=0}^{(p-1)/2} \dfrac{(2k)!}{(k!)^2}$
But I'm not sure how to simplify this result. Would the Binomial Theorem be useful?