We consider a probability space $(\Omega, \mathcal A, \text{Pr})$, and for concision we define the preimage
$$S_n(\varepsilon) := \{ \omega \in \Omega : \lvert X_n(\omega) -
X(\omega) \rvert \geq \varepsilon \} \in \mathcal{A}.$$
With this notation, by definition we have that
$$\begin{align}X_n \to X \text{ almost surely}
&\iff \operatorname{Pr}( \limsup_{n \to \infty} S_n(\varepsilon)) = 0
\quad \forall \varepsilon > 0, \\
X_n \to X \text{ in probability}
&\iff \lim_{n \to \infty} \operatorname{Pr}(S_n (\varepsilon)) = 0
\quad \forall \varepsilon > 0.\end{align}$$
Now, by the reverse Fatou's lemma $(*)$
it follows that for all $\varepsilon > 0$
$$0 = \operatorname{Pr}( \limsup_{n \to \infty} S_n(\varepsilon))
\overset{(*)}{\geq}
\limsup_{n \to \infty} \operatorname{Pr}(S_n(\varepsilon)) \ge
\lim_{n \to \infty} \operatorname{Pr}(S_n(\varepsilon)) \tag{1}.$$
Naturally $\text{Pr} (S_n(\varepsilon)) \geq 0$, as for any probability, so $(1)$ finally implies that
$$\operatorname{Pr}( \limsup_{n \to \infty} S_n(\varepsilon)) = 0
\quad \forall \varepsilon > 0 \Longrightarrow
\lim_{n \to \infty} \operatorname{Pr}(S_n(\varepsilon)) = 0
\quad \forall \varepsilon > 0. \tag 2$$
In other words, almost sure convergence implies convergence in probability. In turn, the counterexample in Davide Giraudo's answer to
this post shows that the converse of $(2)$ doesn't hold. I transcribe and expand here his answer.
Let $(X_n)$ be a sequence of real, independent random variables such that for all $n \in \mathbb N^*$
$$
\text{Pr}(X_n = x) = \begin{cases}
1 - \frac 1n & \text{for $x = 0$}, \\
\frac 1n & \text{for $x = 1$}, \\
0 & \text{otherwise}.
\end{cases} \tag 3$$
We immediately see from $(3)$ that for all $n \in \mathbb N^*$ and $\varepsilon > 0 $ we have
$$\lim_{n\to\infty} \text{Pr}(\lvert X_n \rvert \geq \varepsilon)
= \begin{cases}
\lim_{n\to\infty} \text{Pr}(X_n = 1) = \lim_{n\to\infty} \frac 1n = 0
& \text{for $\varepsilon \leq 1$}, \\
\lim_{n\to\infty} 0 = 0
& \text{for $\varepsilon > 1$},
\end{cases}$$
which implies that $X_n \to 0$ in probability. Furthermore, all the events $\{X_n = 1\}$ are mutually independent, and
$$\sum_{n\geq 1} \text{Pr}(\lvert X_n \rvert = 1)
= \sum_{n\geq 1} \frac 1n = \infty,$$
so by the second Borel-Cantelli's lemma
we can conclude that
$$ \text{Pr}\bigl(\limsup_{n\to\infty} \{\lvert X_n \rvert = 1 \}\bigr) = 1,$$
which is to say that
$$\text{Pr}\bigl(\limsup_{n\to\infty} \{\lvert X_n \rvert \geq \varepsilon \}\bigr) \neq 0 \quad \forall \varepsilon \in\;]0, 1].$$
Consequently, $X_n \to 0$ in probability but not almost surely. That is, convergence in probability does not imply almost sure convergence, so the latter is a stronger condition than the former.