It is given that $g\in C^1[a;b], g\prime(x)\neq0(x\in[a,b])$.Prove that any function from $R_g[a;b]$(Riemann–Stieltjes integral) is bounded.
My work.
So we need to prove that if $f \in R_g[a;b]$ then $f$ is bounded. We have $\exists lim_{\lambda\to0} \sum_{i=0}^{n-1}f(\xi_i)[g(x_{i+1})-g(x_i)].$ We can write this as $lim_{\lambda\to0} \sum_{i=0}^{n-1}f(\xi_i)\frac{[g(x_{i+1})-g(x_i)](x_{i+1}-x_i)}{x_{i+1}-x_i}=lim_{\lambda\to0} \sum_{i=0}^{n-1}f(\xi_i)[x_{i+1}-x_i]g\prime(x_i)$. Now I am stuck.How use condition given on $g$.