Let $(X_i)_{i=1}^n$ be independent Bernoulli random variables with parameter $\frac{1}{i}$. Let $S_n = \sum_{i=1}^nX_i$ and $C > 0$. I need a bound of $$\mathbb{P}(|S_n - \log n| \geq C \log n)$$ and apparently I can use Chebyshev's inequality to obtain it.
My approach? Well, I first compute the expectation of $S_n$. Then $$\mathbb{E}[S_n] = \sum_{i=1}^n\mathbb{E}[X_i] = \sum_{i=1}^n\frac{1}{i}.$$ Note that $\mathbb{P}(|S_n - \log n| \geq C \log n)$ can be rewritten as $$\mathbb{P}\left(\left|S_n - \sum_{i=1}^n\frac{1}{i} + \sum_{i=1}^n\frac{1}{i} -\log n\right| \geq C \log n\right).$$ But how should I now proceed? There is a hint that $-\log n + \sum_{i=1}^n\frac{1}{i} \to \gamma$, as $n \to \infty$. Here, $\gamma$ is the Euler-Mascheroni constant.