I'm having issues finding out how to find all of these values. Is there a specific pattern? A formula of some sort?
If $A = \begin{bmatrix} x & y \\ z & a\end{bmatrix}$ then $A^2 = \begin{bmatrix} x & y \\ z & a\end{bmatrix}$
I'm having issues finding out how to find all of these values. Is there a specific pattern? A formula of some sort?
If $A = \begin{bmatrix} x & y \\ z & a\end{bmatrix}$ then $A^2 = \begin{bmatrix} x & y \\ z & a\end{bmatrix}$
If $A^2=A$, then $A$ is similar to one of the following matrices $$ \left[\begin{matrix}1 & 0 \\ 0 & 1 \end{matrix}\right],\left[\begin{matrix}1 & 0 \\ 0 & 0\end{matrix}\right],\left[\begin{matrix}0 & 0 \\ 0 & 0 \end{matrix}\right]. $$ This is because every $x$ may be written as $x=(I-A)x+Ax$ and $$ A\{(I-A)x\}=0,\;\; A\{ Ax\} = Ax. $$