Someone, please help me by checking whether the steps of the application of RK4 in my calculation is correct or not. I could not find any paper/books/write with similar problems or examples. Calculations for $x_1$, $\dot x_1$, $y_1$, $\dot y_1$,$\ z_1$, $\dot z_1$ is given below with initial conditions : At, $t_0 =0 sec, r_0 = 3.5 * 10^8 km, \dot r_0 =x_0=0, $$\theta_0 =(π/2)°$,$\dot \theta_0 =y_0 = 0, \phi_0=0^∘, $$\dot \phi_0 = z_0 =0 $,
if, \begin{align} \dot r= x,\, \ddot r = \dot x,\, \dot \theta&=y,\ddot \theta =\dot y,\, \dot \phi =z,\, \ddot \phi=\dot z \end{align} then, the six first-order differential equations: \begin{alignat}1 \dot r& = x &= f_1(t,r, \theta,\phi,x,y,z) \\ \dot x &= r[y^2 +(z +Ω)^2(\sin\theta)^2 - \beta z\sin\theta B_\theta)] &= f_2(t,r,\theta,\phi,x,y,z) \\ \dot \theta &= y &= f_3(t,r,\theta, \phi, x,y,z) \\ \dot y &= \frac{1}{r}[- 2xy - r(z+ Ω)^2 \sin\theta \cos\theta + \beta r z \sin\theta B_r] &=f_4 \\ \dot \theta &=z &= f_5(t,r,\theta,\phi,x,y,z) \\ \dot z &= \frac{1}{r \sin\theta}[-2x(z+Ω)\sin\theta - 2ry(z+ Ω)\cos\theta + \beta(xB_\theta - ryB_r)]&= f_6 \end{alignat} The solutions are: \begin{align} \ x_1 &=\ x_0 + \frac{1}{6} (k_0 + 2k_1 + 2k_2+ k_3) \\ \dot x_1 &= \dot x_0 + \frac{1}{6} (l_0 + 2l_1 + 2l_2+ l_3) \\ y_1 &= y_0 + \frac{1}{6} (m_0 + 2m_1 + 2m_2+ m_3) \\ \dot y_1 &= \dot y_0 + \frac{1}{6} (n_0 + 2n_1 + 2n_2+ n_3) \\ z_1 &= z_0 + \frac{1}{6} (p_0 + 2p_1 + 2p_2+ p_3) \\ \dot z_1 &= \dot z_0 + \frac{1}{6} (q_0 + 2q_1 + 2q_2+ q_3) \end{align} To find x_1, we can find $${k_0 = h* f_1(t_0,x_0,y_0,z_0,r_0,\theta_0, \phi_0)}$$ etc. But to find x_2, what would be the values of $${r_1,\theta_1,\phi_1\quad in\quad f_1(t_1,x_1,y_1,z_!,r_1,\theta_1, \phi_1)} $$ ?
https://drive.google.com/file/d/1VVzkxPaIX7m6zQ5bP8hZVtImPZwz6XA-/view?usp=sharing
$\dot x$or$\ddot x$for $\dot x$ or $\ddot x$ resp. – Jean Marie Sep 16 '22 at 20:29