Generic formula for inverse matrix
$\text{Let A be a 2$\times$2 matrix.To be more specific consider this matrix:}$
$\begin{pmatrix}a&b\\\ c&d\end{pmatrix}$
$\text{Generic formula for inverse matrix: } A^{-1}= \displaystyle \frac 1 {det(A)} \cdot Adj(A)$
$\text{Explanation of symobols: detA is the determinant of matrix A.}$
$\text{Adj(A) is the adjoint matrix.}$
Generic Formula for Adjoint matrix
$\text{Given a square matrix $B=b_{ij}$, the generic formula for adjoint matrix is: }$
$ \displaystyle Adj(B)=({b_{ij}}) \text{ where: }b_{ij}=(-1)^{i+j}\cdot det(b_{ij})$
$\text{In other words the element ${b_{ij}}$ is refering to the value of the determinant}$
$\text{obtained by deleting the $i^{th}$ row and $j^{th}$ column of the B matrix.}$
What about 2$\times$2 matrix?
Given the previous formulas the inverse of matrix A is:
$$ A^{-1}=\frac 1 {det(A)} \cdot \begin{pmatrix}d&-b\\\ -c&a\end{pmatrix} \Rightarrow A^{-1}=\frac 1 {ad-cd} \cdot \begin{pmatrix}d&-b\\\ -c&a\end{pmatrix} $$
$\text{Where: } \begin{pmatrix}d&-b\\\ -c&a\end{pmatrix}=adj(A) $
Conclusion
The lack of knowledge when it comes to basic formulas of inverse matrix its easy to create some misunderstandings.The determinant "changes" the factor that its multiplied.And not only as a number but also "changes" the space.Since adjoint is calculated by determinant we have to divide by the determinant to undo that "change".I strongly recommend to take a look on this site:inverse and adjoint matrix and this:Determinant as scaling factor.