I started from the expansion of cot(x) by the Mittag-Leffler theorem, where:
$$\cot(x) = \frac{1}{x} + \sum_{k = 1}^{\infty} \frac{2x}{x^{2} - k^2 \pi^2}.$$
After splitting up $\cot(x)$, taking the derivative of both sides, and some algebra, I eventually was left with the following expression:
$$-1 = 6\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} + 4x^2 \left [ \sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] ^2 - 4x^2\sum_{k = 1}^{\infty} \frac{1}{({x^{2} - k^2 \pi^2})^2} $$
where $x = 0$ gives $\zeta(2)$. I am now trying to obtain the exact value for $\zeta(4)$ through this expression. To do this, I am attempting to once again take the derivative and then set $x = 0$. My work is shown below.
$$-1 = 6\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} + 4x^2 \left [ \sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] ^2 - 4x^2\sum_{k = 1}^{\infty} \frac{1}{({x^{2} - k^2 \pi^2})^2} \Longrightarrow $$
$\Longrightarrow 0 = -12x\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(x^{2} - k^2 \pi^2)^2} + 8x\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] ^2 + 8x^2\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] \times \frac{d}{dx}\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] - 8x \left [\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(x^{2} - k^2 \pi^2)^2} \right ] \left [ \displaystyle\sum_{k = 1}^{\infty} \frac{-4x}{(x^{2} - k^2 \pi^2)^3} \right ] \Longrightarrow $
Dividing by $x$:
$\Longrightarrow0 =-12\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(x^{2} - k^2 \pi^2)^2} + 8\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] ^2 + \\8x\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] \times \frac{d}{dx}\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{x^{2} - k^2 \pi^2} \right ] - 8x \left [\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(x^{2} - k^2 \pi^2)^2} \right ] \left [ \displaystyle\sum_{k = 1}^{\infty} \frac{-4}{(x^{2} - k^2 \pi^2)^3} \right ] \Longrightarrow $
Setting $x = 0$:
$\Longrightarrow 0 = -12\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(- k^2 \pi^2)^2} + 8\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{- k^2 \pi^2} \right ] ^2 \Longrightarrow $
Multiplying everything by $\pi^4$:
$\Longrightarrow 0 = -12\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(- k^2 )^2} + 8\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{- k^2 } \right ] ^2 \Longrightarrow $
$\Longrightarrow 0 = 3\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(k^2 )^2} - 2\left [ \displaystyle\sum_{k = 1}^{\infty} \frac{1}{ k^2 } \right ] ^2 \Longrightarrow $
Solving for ζ(4):
$\Longrightarrow 0 = 3\displaystyle\sum_{k = 1}^{\infty} \frac{1}{(k^2 )^2} - 2\left [ \frac{\pi^2}{6} \right ] ^2 \Longrightarrow $
$\Longrightarrow \displaystyle\sum_{k = 1}^{\infty} \frac{1}{k^4 } = \frac{\pi^4}{54}$
However, my answer is wrong. The correct result would be $\frac{\pi^4}{90}$. Any help on this would be greatly appreciated.
$$\frac{\text{d}}{\text{d}x} \left(- 4x^2\sum_{k = 1}^{\infty} \frac{1}{(x^2 - k^2\pi^2)^2}\right)$$
Seems like you made some error in this part, because I do not see any product rule (like you did instead in the previous term).
– Aug 24 '22 at 17:49