How to calculate the gradient $\nabla_{\bf A} \left( {\bf x}^\top {\bf A}^{1/2} {\bf x} \right)$, where $\bf x$ is $N \times 1$ column vector and $\bf A$ is $N \times N$ symmetric positive matrix?
The difficulty is that there is ${\bf x}^\top {\bf A}^{1/2} {\bf x}$ rather than ${\bf x}^\top {\bf A} {\bf x}$.
Motivation
I want to calculate the gradient of the vector Gaussian distribution $\mathcal{N} \left( \mathbf{y} \mid \mathbf{A}^{\frac{1}{2}}\mathbf{x}, \mathbf{I} \right)$ w.r.t. $\mathbf{A}$, where $\mathbf{I}$ is an identity matrix, and
$$ \mathcal{N} \left( \mathbf{y} \mid \mathbf{A}^{\frac{1}{2}},\mathbf{I} \right) = (2\pi)^{-\frac{N}{2}} \exp \left( -\left\|\mathbf{y}-\mathbf{A}^{\frac{1}{2}}\mathbf{x} \right\|_2^2 \right) $$
where $\|\cdot\|_2$ denotes the $\ell_2$ norm. Its difficulty is to calculate the term
$$\nabla_{\mathbf{A}} \left( \mathbf{y}^T\mathbf{A}^{\frac{1}{2}}\mathbf{x} \right)$$
This term can be similarly solved by $\nabla_{\mathbf{A}}\left( \mathbf{x}^T\mathbf{A}^{\frac{1}{2}}\mathbf{x} \right)$. And I believe this term exists.