$$\iiint_{[-1,1]^3}\frac{d\mu}{x^2+y^2+z^2} = \iint_{[-1,1]^2}\frac{2}{\sqrt{x^2+y^2}}\arctan\left(\frac{1}{\sqrt{x^2+y^2}}\right)\,dx\,dy $$
equals
$$ 8\iint_{[0,1]^2}\frac{1}{\sqrt{x^2+y^2}}\arctan\left(\frac{1}{\sqrt{x^2+y^2}}\right)\,dx\,dy $$
or
$$ 16\iint_{0\leq y\leq x\leq 1}\frac{1}{\sqrt{x^2+y^2}}\arctan\left(\frac{1}{\sqrt{x^2+y^2}}\right)\,dx\,dy \stackrel{y\mapsto tx}{=} 16\iint_{[0,1]^2}\frac{1}{\sqrt{1+ t^2}}\arctan\left(\frac{1}{x\sqrt{1+ t^2}}\right)\,dx\,dt $$
or
$$ 16\int_{0}^{1}\left(\frac{\pi}{2\sqrt{1+t^2}}-\frac{\arctan\sqrt{1+t^2}}{\sqrt{1+t^2}}+\frac{\log(2+t^2)}{2(1+t^2)}\right)\,dt $$
or
$$ 8\pi\log(1+\sqrt{2})+16\int_{0}^{1}\left(-\frac{\arctan\sqrt{1+t^2}}{\sqrt{1+t^2}}+\frac{\log(2+t^2)}{2(1+t^2)}\right)\,dt. $$
The last integral can be written in terms of polylogarithms, or just numerically evaluated through Newton-Cotes or Gaussian quadrature. The outcome, of course, is larger than $4\pi$ and it equals $\color{blue}{15.348248444887\ldots}$
nquadwhich does such stuff pretty accurately. – Kurt G. Aug 24 '22 at 05:42integral3. – Dan Doe Aug 24 '22 at 13:02