For fixed $\alpha_i$ so that $\sum\limits_{i=1}^n\alpha_i=1$, and $z_i\gt0$, consider the quantity
$$
\prod_{i=1}^n(1+z_i)^{\alpha_i}-\prod_{i=1}^nz_i^{\alpha_i}\tag1
$$
Without loss of generality, assume that $z_i\lt z_{i+1}$. If $z_i=z_{i+1}$, just add $\alpha_{i+1}$ to $\alpha_i$ then remove $z_{i+1}$ and $\alpha_{i+1}$.
Let
$$
\lambda=\prod_{i=1}^n\left(\frac{z_i}{1+z_i}\right)^{\alpha_i}\tag2
$$
Since $\lambda$ is a geometric mean of the $\frac{z_i}{1+z_i}$, we have $\frac{z_1}{1+z_1}\le\lambda\le\frac{z_n}{1+z_n}$.
Taking the partial derivative of $(1)$ yields
$$
\begin{align}
\frac{\partial}{\partial z_k}\left(\prod_{i=1}^n(1+z_i)^{\alpha_i}-\prod_{i=1}^nz_i^{\alpha_i}\right)
&=\prod_{i=1}^n(1+z_i)^{\alpha_i}\frac{\alpha_k}{1+z_k}-\prod_{i=1}^nz_i^{\alpha_i}\frac{\alpha_k}{z_k}\tag{3a}\\
&=\prod_{i=1}^n(1+z_i)^{\alpha_i}\left(\frac{\alpha_k}{1+z_k}-\lambda\frac{\alpha_k}{z_k}\right)\tag{3b}\\
&=\prod_{i=1}^n(1+z_i)^{\alpha_i}\left(\frac{z_k}{1+z_k}-\lambda\right)\frac{\alpha_k}{z_k}\tag{3c}
\end{align}
$$
Since $\frac{z_n}{1+z_n}\ge\lambda$, $(3)$ says that
$$
\frac{\partial}{\partial z_n}\left(\prod_{i=1}^n(1+z_i)^{\alpha_i}-\prod_{i=1}^nz_i^{\alpha_i}\right)\ge0\tag4
$$
$(4)$ implies that $(1)$ decreases as we decrease $z_n$ to $z_{n-1}$. Then combining $z_n$ with $z_{n-1}$, as outlined after $(1)$, we get
$$
\prod_{i=1}^n(1+z_i)^{\alpha_i}-\prod_{i=1}^nz_i^{\alpha_i}\ge
\prod_{i=1}^{n-1}(1+z_i)^{\beta_i}-\prod_{i=1}^{n-1}z_i^{\beta_i}\tag5
$$
where $\beta_i=\alpha_i$ for $i\lt n-1$ and $\beta_{n-1}=\alpha_{n-1}+\alpha_n$.
Iterating $(5)$, we get
$$
\begin{align}
\prod_{i=1}^n(1+z_i)^{\alpha_i}-\prod_{i=1}^nz_i^{\alpha_i}
&\ge(1+z_1)-z_1\tag{6a}\\
&=1\tag{6b}
\end{align}
$$
Set $z_i=\frac{y_i}{x_i}$ and multiply $(6)$ by $\frac12\prod\limits_{i=1}^nx_i^{\alpha_i}$ to get
$$
\frac12\left(\prod_{i=1}^nx_i^{\alpha_i}+\prod_{i=1}^ny_i^{\alpha_i}\right)\le\prod_{i=1}^n\left(\frac{x_i+y_i}2\right)^{\alpha_i}\tag7
$$
which, since $f$ is continuous, says that
$$
f(x)=\prod_{i=1}^nx_i^{\alpha_i}\tag8
$$
is concave.