$O,A$ and $B$ are arbitrary points on the plane. Point $C$ moves on the circle with center $O$ and radius $OB$.
Construct a circle with center $C$ and externally tangent to the circle with center $A$ and radius $AB$. Let the tangency point be $D$.
$E$ is the point on the circle $C$, such that $OC∥DE$.
$Γ$ is the locus of the point $E$ [as $C$ moves on the circle $O$].
Prove that $Γ$ is always tangent to the circle $C$ [as $C$ moves on the circle $O$].
I found this when trying to geometrically construct a point on $Γ$ which is the envelope of circle $C$.
The equation of $Γ$ when $B(1,0),A(2,0)$
$20 x^8 y^2-16 x^7 y^2+40 x^6 y^4-444 x^6 y^2-24 x^5 y^4+708 x^5 y^2+40 x^4 y^6-666 x^4 y^4+1706 x^4 y^2 -16 x^3 y^6+708 x^3 y^4-3752 x^3 y^2+20 x^2 y^8-444 x^2 y^6+1834 x^2 y^4+834 x^2 y^2+4 x^{10}-4 x^9-111 x^8 +236 x^7+526 x^6-1876 x^5+1537 x^4+572 x^3-1716 x^2-4 x y^8+236 x y^6 -1876 x y^4+1596 x y^2+1072 x+4 y^{10}-111 y^8+654 y^6-703 y^4-580 y^2-240=0$
Mathematica code:
GroebnerBasis[{(-c + x)^2 + (-s + y)^2 == (-1 + u)^2,
s (2 (-1 + v) + x) - c y == 0, c^2 + s^2 == 1,
u^2 == (-2 + c)^2 + s^2, (5 - 4 c) v^2 == 1}, {x, y}, {c, s, u, v}]
