I found a clue in the paper "Classifying Material Implications over Minimal Logic".
The way to use Peirce's Law to prove $P$, is to prove $(P \to Q) \to P)$. A convenient substitution is $P := p \lor (p \to q)$ and $Q := p$. Then detachment and Peirce's Law gives P.
Using that, I have proven 2 and 4. More, I have proven $p \lor (p \to q)$ from Peirce's Law and from that (2). Conversely, from (2) I have proven $p \lor (p \to q)$, and then Peirce's Law.
The forward direction did not require anything other than basic properties. No negation at all, no self distribution or anything related. Peirce's Law is only required in a single place (Ax 4). The properties that I used are:
Ax 1. p, p -> q >- q
Ax 2. p -> (q -> p)
Ax 4. ((p -> q) -> p) -> p
Ax 8. p -> p v q
Ax 9. q -> p v q
Ax 10. (p -> r) & (q -> r) -> (p v q -> r)
Th 1. p, q >- p & q
Th 14. p -> p
Th 285. (p -> q) & (q -> r) -> (p -> r)
Th 286. (p -> q) & (p -> r) -> (p -> q & r)
The proofs in the forward direction are shown below (all of the proofs have been validated by a theorem verification system). Some lines are very, very long, so local definitions have been used for readability.
Th 300. p v (p -> q)
1. Df A. A := p v (p -> q)
2. Df B. B := p -> q
3. Df C. C := p -> A
4. Df D. D := A -> q
5. Ax 8. C
6. Ax 2. C -> (D -> C)
7. Ax 1. {5, 6} D -> C
8. Th 14. D -> D
9. Th 1. {7, 8} (D -> C) & (D -> D)
10. Th 286. (D -> C) & (D -> D) -> (D -> C & D)
11. Ax 1. {9, 10} D -> C & D
12. Th 285. C & D -> B
13. Th 1. {11, 12} (D -> C & D) & (C & D -> B)
14. Th 285. (D -> C & D) & (C & D -> B) -> (D -> B)
15. Ax 1. {13, 14} D -> B
16. Ax 9. B -> A
17. Th 1. {15, 16} (D -> B) & (B -> A)
18. Th 285. (D -> B) & (B -> A) -> (D -> A)
19. Ax 1. {17, 18} (D -> A)
20. Ax 4. (D -> A) -> A
21. Ax 1. {19, 20} A
22. Df A. {21} p v (p -> q)
.
Th 301. (p -> q) v (q -> r)
1. Df A. A := (p -> q) v (q -> r)
2. Ax 2. q -> (p -> q)
3. Ax 8. (p -> q) -> A
4. Th 1. {2, 3} (q -> (p -> q)) & ((p -> q) -> A)
5. Th 285. (q -> (p -> q)) & ((p -> q) -> A) -> (q -> A)
6. Ax 1. {4, 5} q -> A
7. Ax 9. (q -> r) -> A
8. Th 1. {6, 7} (q -> A) & ((q -> r) -> A)
9. Ax 10. (q -> A) & ((q -> r) -> A) -> (q v (q -> r) -> A)
10. Ax 1. {8, 9} q v (q -> r) -> A
11. Th 300. q v (q -> r)
12. Ax 1. {11, 10} A
13. Df A. {12} (p -> q) v (q -> r)
.
Th 302. (p -> q) v (q -> p)
1. Th 301. (p -> q) v (q -> p)
The proofs in the reverse direction require assertion, which is equivalent to self distribution, and is valid in 4CL, plus two additional properties.
Th 17. p v p -> p
Th 69. (p -> q) & (r -> s) -> (p v r -> q v s)
Th 605. p & (p -> q) -> q
The proofs in the reverse direction follows.
Th 303. p v (p -> q)
1. Df A. A := (p -> p) -> p
2. Df B. B := p -> q
3. Df C. C := p -> p
4. Th 14. C
5. Ax 2. C -> (A -> C)
6. Ax 1. {4, 5} A -> C
7. Th 14. A -> A
8. Th 1. {6, 7} (A -> C) & (A -> A)
9. Th 286. (A -> C) & (A -> A) -> (A -> C & A)
10. Ax 1. {8, 9} A -> C & A
11. Th 605. C & A -> p
12. Th 1. {10, 11} (A -> C & A) & (C & A -> p)
13. Th 285. (A -> C & A) & (C & A -> p) -> (A -> p)
14. Ax 1. {12, 13} A -> p
15. Th 14. B -> B
16. Th 1. {14, 15} (A -> p) & (B -> B)
17. Th 69. (A -> p) & (B -> B) -> (A v B -> p v B)
18. Ax 1. {16, 17} A v B -> p v B
19. Th 301. A v B
20. Ax 1. {19, 18} p v B
21. Df B. {20} p v (p -> q)
.
Th 304. ((p -> q) -> p) -> p
1. Df A. A := (p -> q) -> p
2. Df B. B := p v (p -> q)
3. Df C. C := p v p
4. Df D. D := B -> C
5. Df E. E := p -> p
6. Th 14. E
7. Ax 2. E -> (A -> E)
8. Ax 1. {6, 7} A -> E
9. Th 14. A -> A
10. Th 1. {8, 9} (A -> E) & (A -> A)
11. Th 286. (A -> E) & (A -> A) -> (A -> E & A)
12. Ax 1. {10, 11} A -> E & A
13. Th 69. E & A -> D
14. Th 1. {12, 13} (A -> E & A) & (E & A -> D)
15. Th 285. (A -> E & A) & (E & A -> D) -> (A -> D)
16. Ax 1. {14, 15} A -> D
17. Th 303. B
18. Ax 2. B -> (A -> B)
19. Ax 1. {17, 18} A -> B
20. Th 1. {19, 16} (A -> B) & (A -> D)
21. Th 286. (A -> B) & (A -> D) -> (A -> B & D)
22. Ax 1. {20, 21} A -> B & D
23. Th 605. B & D -> C
24. Th 1. {22, 23} (A -> B & D) & (B & D -> C)
25. Th 285. (A -> B & D) & (B & D -> C) -> (A -> C)
26. Ax 1. {24, 25} A -> C
27. Th 17. C -> p
28. Th 1. {26, 27} (A -> C) & (C -> p)
29. Th 285. (A -> C) & (C -> p) -> (A -> p)
30. Ax 1. {28, 29} A -> p
31. Df A. {30} ((p -> q) -> p) -> p
I have not yet found a proof for (1) or (3). If I do so, I will update this answer. It would be interesting if anyone can find a way to eliminate assertion or its related theses in the reverse proofs.
What I mean by "it doesn't have contraposition" is that it is neither an axiom nor can it be derived. That can be shown using Belnap's FOUR semantics.
– Michael Lee Finney Aug 20 '22 at 23:27