Let $\mathcal{R}$ be the right-shift operator on $\bigoplus_{n=0}^{\infty}\ell^{2}$, that is, $\mathcal{R}(x_{0},x_{1},\ldots):=(0,x_{0},x_{1},\ldots)$ for $x_{j}\in\ell^{2}$ and $\sum_{j}\|x_{j}\|_{\ell^{2}}^{2}<\infty$. Is it true that $\sigma(\mathcal{R})=\overline{\mathbb{D}}$, where $\mathbb{D}$ is the open unit disc in $\mathbb{C}$?
So for the standard right-shift operator $R\colon\ell^{2}\to\ell^{2}$ this is well-known and easy to prove. See for example this post. However, this argument does not seem to work for $\mathcal{R}\colon\bigoplus_{n=0}^{\infty}\ell^{2}\to\bigoplus_{n=0}^{\infty}\ell^{2}$.
Since $\|\mathcal{R}\|=1$, it is easy to see that $\sigma(\mathcal{R})\subset\overline{\mathbb{D}}$. Is the reverse inclusion true?